Effect of Co and Mo Loading by Impregnation and Ion Exchange Methods on Morphological Properties of Zeolite Y Catalyst

Coal tar can be used as an alternative raw material for the production of liquid fuels, such as: gasoline and diesel through hydrogenation and cracking process. Hydrogenation and cracking process requires a catalyst which has metal components for hydrogenation reaction and acid components for cracki...

Full description

Saved in:
Bibliographic Details
Main Authors: Anggoro, Didi Dwi (Author), Hidayati, Nur (Author), Buchori, Luqman (Author), Mundriyastutik, Yayuk (Author)
Format: EJournal Article
Published: Department of Chemical Engineering - Diponegoro University, 2016-04-01.
Subjects:
Online Access:Get Fulltext
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02835 am a22002893u 4500
001 BCREC_UNDIP_418_302
042 |a dc 
100 1 0 |a Anggoro, Didi Dwi  |e author 
100 1 0 |e contributor 
700 1 0 |a Hidayati, Nur  |e author 
700 1 0 |a Buchori, Luqman  |e author 
700 1 0 |a Mundriyastutik, Yayuk  |e author 
245 0 0 |a Effect of Co and Mo Loading by Impregnation and Ion Exchange Methods on Morphological Properties of Zeolite Y Catalyst 
260 |b Department of Chemical Engineering - Diponegoro University,   |c 2016-04-01. 
500 |a https://ejournal2.undip.ac.id/index.php/bcrec/article/view/418 
520 |a Coal tar can be used as an alternative raw material for the production of liquid fuels, such as: gasoline and diesel through hydrogenation and cracking process. Hydrogenation and cracking process requires a catalyst which has metal components for hydrogenation reaction and acid components for cracking reaction. In this study, the Co/Zeolite Y and Co-Mo/Zeolite Y catalysts were prepared by impregnation and ion exchange methods. Characterizations of the catalysts were carried out by X-Ray Diffraction (XRD) and gravimetric acidity. The catalysts were tested for coal tar conversion to liquid fuel under various temperatures, amount of catalyst and hydrogen flow rates in a fixed bed flow reaction system. Liquid fuels products were analyzed by gas chromatography (GC). The XRD Spectra indicated that the addition of Co and Mo metals did not affect catalysts structure, however it alters the percentage of crystallinity. The addition of Co metal using impregnation method caused reduction in crystallinity, while the addition of Mo caused improvement of crystallinity. The Co-Mo/Zeolite Y catalyst with highest crystallinity was obtained by loading using ion exchange method. The addition of Co and Mo metals caused increasing acidity. However, the increasing composition of Co and Mo loaded on Zeolite Y catalyst decreased the yield of liquid fuels from coal tar. It can be concluded that the yields of liquid fuels and the composition of gasoline fractions from hydrocracking of coal tar were highly dependent on  acidity of the catalyst.  
540 |a Copyright (c) 2016 by Authors, Published by BCREC Group 
540 |a http://creativecommons.org/licenses/by-sa/4.0 
546 |a eng 
690 |a Coal tar; Cobalt; Molybdenum; Zeolite Y; Morphology 
655 7 |a info:eu-repo/semantics/article  |2 local 
655 7 |a info:eu-repo/semantics/publishedVersion  |2 local 
655 7 |2 local 
786 0 |n Bulletin of Chemical Reaction Engineering & Catalysis; 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016); 75-83 
786 0 |n 1978-2993 
787 0 |n https://ejournal2.undip.ac.id/index.php/bcrec/article/view/418/302 
856 4 1 |u https://ejournal2.undip.ac.id/index.php/bcrec/article/view/418/302  |z Get Fulltext