Additive Manufacturing: Alloy Design and Process Innovations

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages...

Full description

Saved in:
Bibliographic Details
Main Author: Wang, Zhi (auth)
Other Authors: Konda Gokuldoss, Prashanth (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
ABS
n/a
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 08453naaaa2202305uu 4500
001 doab_20_500_12854_40124
005 20210211
020 |a books978-3-03928-415-3 
020 |a 9783039284146 
020 |a 9783039284153 
024 7 |a 10.3390/books978-3-03928-415-3  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Wang, Zhi  |4 auth 
700 1 |a Konda Gokuldoss, Prashanth  |4 auth 
245 1 0 |a Additive Manufacturing: Alloy Design and Process Innovations 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (352 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a microstructure 
653 |a slag 
653 |a crystallographic texture 
653 |a epoxy solder 
653 |a additive manufacturing 
653 |a substrate preheating 
653 |a thermosetting epoxy resin 
653 |a AlSi10Mg alloy 
653 |a impact 
653 |a residual stress 
653 |a stability lobe diagram 
653 |a laves phase 
653 |a vanadium 
653 |a selective laser melting (SLM) 
653 |a molten pool dynamic behavior 
653 |a scanning strategy 
653 |a pulse frequency 
653 |a thin-walled weak rigidity parts 
653 |a scanning 
653 |a aluminum 
653 |a elastic abrasive 
653 |a 2219 aluminum alloy 
653 |a Powder bed 
653 |a ABS 
653 |a laser energy density 
653 |a equivalent processing model 
653 |a composition 
653 |a numerical analysis 
653 |a scanning electron microscopy (SEM) 
653 |a Hastelloy X alloy 
653 |a regular mixing 
653 |a texture evolution 
653 |a graphene nano-sheets (GNSs) 
653 |a Electron Beam Melting 
653 |a powder bed fusion 
653 |a microstructural evolution 
653 |a Mg content 
653 |a cement 
653 |a bulk metallic glasses 
653 |a grain refinement 
653 |a Taguchi 
653 |a intermediate thermo-mechanical treatment 
653 |a valorization 
653 |a microstructure and properties 
653 |a arc current 
653 |a high computational efficiency 
653 |a powder properties 
653 |a dynamic characteristics 
653 |a composite materials 
653 |a CuAl2 phase 
653 |a rapid solidification 
653 |a magnetizer 
653 |a M300 mold steel 
653 |a circular economy 
653 |a titanium alloy 
653 |a Al-5Si alloy 
653 |a Al-Mg-Si alloy 
653 |a ultrasonic bonding 
653 |a water absorption 
653 |a disc brake 
653 |a support strategy 
653 |a inoculation 
653 |a arc additive manufacture 
653 |a 3D metal printing 
653 |a ultrafast laser 
653 |a Hot Isostatic Pressure 
653 |a arc additive manufacturing 
653 |a continuous carbon fiber 
653 |a performance characteristics 
653 |a process-damping 
653 |a intermetallic compound (IMC) 
653 |a interfaces 
653 |a direct metal laser sintering 
653 |a porosity 
653 |a nickel-based superalloy 
653 |a element segregation 
653 |a hydrophobicity 
653 |a H13 tool steel 
653 |a Cu50Zr43Al7 
653 |a metal powders 
653 |a parameter optimization 
653 |a side spatters 
653 |a powder packing 
653 |a 3D printing 
653 |a precipitates 
653 |a n/a 
653 |a simulation 
653 |a laser cladding deposition 
653 |a melt pool size 
653 |a quenching rate 
653 |a Al-Mg alloy 
653 |a tailored properties 
653 |a workpiece scale 
653 |a fatigue 
653 |a laser cladding 
653 |a Ti-6Al-4V 
653 |a deformation 
653 |a quality of the as-built parts 
653 |a model 
653 |a milling 
653 |a wire feeding additive manufacturing 
653 |a martensitic transformation 
653 |a ball milling 
653 |a Inconel 718 
653 |a ablation 
653 |a in-process temperature in MPBAM 
653 |a subgranular dendrites 
653 |a porosity reduction 
653 |a femtosecond 
653 |a paint bake-hardening 
653 |a Al6061 
653 |a defects 
653 |a continuous dynamic recrystallization 
653 |a wear 
653 |a Additive manufacturing 
653 |a volumetric heat source 
653 |a Ti6Al4V alloy 
653 |a AlSi10Mg 
653 |a radial grooves 
653 |a GH4169 
653 |a temperature and stress fields 
653 |a laser powder bed fusion 
653 |a metallic glasses 
653 |a numerical simulation 
653 |a latent heat 
653 |a divisional scanning 
653 |a wire lateral feeding 
653 |a laser powder bed fusion (LPBF) 
653 |a heat treatment 
653 |a thermal behaviour 
653 |a fused filament fabrication 
653 |a microstructures 
653 |a thermal conductivity 
653 |a 12CrNi2 alloy steel powder 
653 |a tensile strength 
653 |a hot stamping steel blanks 
653 |a multi-laser manufacturing 
653 |a aluminum alloys 
653 |a additive surface structuring 
653 |a parts design 
653 |a process parameters 
653 |a thermal stress analysis 
653 |a SLM process parameters 
653 |a nickel alloys 
653 |a Al-Si 
653 |a powder flowability 
653 |a laser power absorption 
653 |a refractory high-entropy alloy 
653 |a localized inductive heating 
653 |a mechanical properties 
653 |a selective laser melting 
653 |a storage energy 
653 |a concrete 
653 |a mechanical property 
653 |a gray cast iron 
653 |a constitutive model 
653 |a analytical modeling 
653 |a hot deformation 
653 |a epitaxial growth 
653 |a design 
653 |a flowability 
653 |a amorphous alloy 
653 |a PSO-BP neural network algorithm 
653 |a molten pool evolution 
653 |a microhardness measurement 
653 |a macro defects 
653 |a thermal capillary effects 
653 |a finite element analysis 
653 |a dynamic properties 
653 |a WxNbMoTa 
653 |a properties 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2188  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/40124  |7 0  |z DOAB: description of the publication