Biological Crystallization

For at least six hundred million years, life has been a fascinating laboratory of crystallization, referred to as biomineralization. During this huge lapse of time, many organisms from diverse phyla have developed the capability to precipitate various types of minerals, exploring distinctive pathway...

Full description

Saved in:
Bibliographic Details
Main Author: Morales, Jaime Gómez (auth)
Other Authors: Falini, Giuseppe (auth), García Ruiz, Juan Manuel (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05711naaaa2201321uu 4500
001 doab_20_500_12854_42223
005 20210211
020 |a books978-3-03921-404-4 
020 |a 9783039214044 
020 |a 9783039214037 
024 7 |a 10.3390/books978-3-03921-404-4  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Morales, Jaime Gómez  |4 auth 
700 1 |a Falini, Giuseppe  |4 auth 
700 1 |a García Ruiz, Juan Manuel  |4 auth 
245 1 0 |a Biological Crystallization 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (184 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a For at least six hundred million years, life has been a fascinating laboratory of crystallization, referred to as biomineralization. During this huge lapse of time, many organisms from diverse phyla have developed the capability to precipitate various types of minerals, exploring distinctive pathways for building sophisticated structural architectures for different purposes. The Darwinian exploration was performed by trial and error, but the success in terms of complexity and efficiency is evident. Understanding the strategies that those organisms employ for regulating the nucleation, growth, and assembly of nanocrystals to build these sophisticated devices is an intellectual challenge and a source of inspiration in fields as diverse as materials science, nanotechnology, and biomedicine. However, "Biological Crystallization" is a broader topic that includes biomineralization, but also the laboratory crystallization of biological compounds such as macromolecules, carbohydrates, or lipids, and the synthesis and fabrication of biomimetic materials by different routes. This Special Issue collects 15 contributions ranging from biological and biomimetic crystallization of calcium carbonate, calcium phosphate, and silica-carbonate self-assembled materials to the crystallization of biological macromolecules. Special attention has been paid to the fundamental phenomena of crystallization (nucleation and growth), and the applications of the crystals in biomedicine, environment, and materials science. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a chitosan 
653 |a Csep1p 
653 |a bond selection during protein crystallization 
653 |a bioremediation 
653 |a education 
653 |a reductants 
653 |a heavy metals 
653 |a biomimetic crystallization 
653 |a MTT assay 
653 |a protein crystallization 
653 |a drug discovery 
653 |a optimization 
653 |a polymyxin resistance 
653 |a lysozyme 
653 |a ependymin-related protein (EPDR) 
653 |a equilibration between crystal bond and destructive energies 
653 |a barium carbonate 
653 |a dyes 
653 |a microseed matrix screening 
653 |a nanoapatites 
653 |a colistin resistance 
653 |a Haloalkane dehalogenase 
653 |a diffusion 
653 |a polyacrylic acid 
653 |a random microseeding 
653 |a protein 'affinity' to water 
653 |a insulin 
653 |a protein crystal nucleation 
653 |a agarose 
653 |a lithium ions 
653 |a ependymin (EPN) 
653 |a {00.1} calcite 
653 |a seeding 
653 |a Campylobacter consisus 
653 |a metallothioneins 
653 |a Crohn's disease 
653 |a balance between crystal bond energy and destructive surface energies 
653 |a color change 
653 |a microbially induced calcite precipitation (MICP) 
653 |a crystallization of macromolecules 
653 |a crystallization 
653 |a calcein 
653 |a MCR-1 
653 |a Cry protein crystals 
653 |a L-tryptophan 
653 |a circular dichroism 
653 |a crystal violet 
653 |a nanocomposites 
653 |a halide-binding site 
653 |a calcium carbonate 
653 |a PCDA 
653 |a ultrasonic irradiation 
653 |a adsorption 
653 |a biochemical aspects of the protein crystal nucleation 
653 |a GTL-16 cells 
653 |a proteinase k 
653 |a neutron protein crystallography 
653 |a classical and two-step crystal nucleation mechanisms 
653 |a thermodynamic and energetic approach 
653 |a heavy metal contamination 
653 |a N-acetyl-D-glucosamine 
653 |a crystallization in solution flow 
653 |a solubility 
653 |a biomorphs 
653 |a droplet array 
653 |a biomimetic materials 
653 |a ferritin 
653 |a biomineralization 
653 |a wastewater treatment 
653 |a H3O+ 
653 |a silica 
653 |a graphene 
653 |a supersaturation dependence of the crystal nucleus size 
653 |a pyrrole 
653 |a micro-crystals 
653 |a nucleation 
653 |a crystallography 
653 |a mammalian ependymin-related protein (MERP) 
653 |a high-throughput 
653 |a vaterite transformation 
653 |a gradients 
653 |a materials science 
653 |a bioprecipitation 
653 |a biomedicine 
653 |a human carbonic anhydrase IX 
653 |a protein crystal nucleation in pores 
653 |a growth 
653 |a crystal growth 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1563  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/42223  |7 0  |z DOAB: description of the publication