Energy Efficiency in Buildings: Both New and Rehabilitated

Buildings are one of the main causes of the emission of greenhouse gases in the world. Europe alone is responsible for more than 30% of emissions, or about 900 million tons of CO2 per year. Heating and air conditioning are the main cause of greenhouse gas emissions in buildings. Most buildings curre...

Full description

Saved in:
Bibliographic Details
Main Author: Gómez Melgar, Sergio (auth)
Other Authors: Andújar, José Manuel (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
air
GCC
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05693naaaa2201369uu 4500
001 doab_20_500_12854_46375
005 20210211
020 |a books978-3-03928-703-1 
020 |a 9783039287024 
020 |a 9783039287031 
024 7 |a 10.3390/books978-3-03928-703-1  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Gómez Melgar, Sergio  |4 auth 
700 1 |a Andújar, José Manuel  |4 auth 
245 1 0 |a Energy Efficiency in Buildings: Both New and Rehabilitated 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (412 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Buildings are one of the main causes of the emission of greenhouse gases in the world. Europe alone is responsible for more than 30% of emissions, or about 900 million tons of CO2 per year. Heating and air conditioning are the main cause of greenhouse gas emissions in buildings. Most buildings currently in use were built with poor energy efficiency criteria or, depending on the country and the date of construction, none at all. Therefore, regardless of whether construction regulations are becoming stricter, the real challenge nowadays is the energy rehabilitation of existing buildings. It is currently a priority to reduce (or, ideally, eliminate) the waste of energy in buildings and, at the same time, supply the necessary energy through renewable sources. The first can be achieved by improving the architectural design, construction methods, and materials used, as well as the efficiency of the facilities and systems; the second can be achieved through the integration of renewable energy (wind, solar, geothermal, etc.) in buildings. In any case, regardless of whether the energy used is renewable or not, the efficiency must always be taken into account. The most profitable and clean energy is that which is not consumed. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a artificial neural network 
653 |a thermal performance 
653 |a dynamic simulation 
653 |a building renovation 
653 |a zero energy building 
653 |a building 
653 |a energy productivity 
653 |a building sector 
653 |a three-phase unbalance minimization 
653 |a optimization 
653 |a seasonal performance factor (SPF) 
653 |a envelope transmittance 
653 |a demolition 
653 |a envelope airtightness 
653 |a building energy prediction 
653 |a energy 
653 |a Korean household energy consumption 
653 |a floor envelope design 
653 |a building refurbishment 
653 |a perturbation and observation 
653 |a glazing 
653 |a ground and water source heat pump (ASHP 
653 |a sensitivity 
653 |a energy efficiency promotion 
653 |a model predictive control 
653 |a renovation 
653 |a home energy management system 
653 |a energy tunnel 
653 |a performance parameter design 
653 |a air 
653 |a coefficient of performance (COP) 
653 |a Arab region 
653 |a building rehabilitation 
653 |a ground heat transfer 
653 |a residential buildings 
653 |a Deutsche Gesellschaft für Nachhaltiges Bauen (DGNB) 
653 |a policy design 
653 |a building user activity 
653 |a Leadership in Energy &amp 
653 |a lightweight expanded clay aggregate (LECA) 
653 |a energy renovation 
653 |a energy performance 
653 |a urban modelling 
653 |a Maghreb 
653 |a analytical hierarchy process 
653 |a surface cooling 
653 |a thermal insulation 
653 |a Level(s) 
653 |a subtropical climate 
653 |a energy efficiency 
653 |a green building rating systems 
653 |a Ipomoea batatas 
653 |a big data 
653 |a life cycle cost analysis 
653 |a domestic hot water (DHW) 
653 |a multi-family buildings 
653 |a greenhouse 
653 |a building energy 
653 |a passive architecture 
653 |a prediction 
653 |a Haute Qualité Environnementale (HQE) 
653 |a Minimum-Energy Building (MEB) 
653 |a energy modeling 
653 |a Mashreq 
653 |a simulation engines 
653 |a HVAC demand 
653 |a test method 
653 |a adjustable step size 
653 |a life cycle cost 
653 |a energy saving ratio 
653 |a Environmental Design (LEED) 
653 |a influencing factors 
653 |a GSHP and WSHP) 
653 |a energy use 
653 |a subtropical climate building 
653 |a single-person household 
653 |a heat load 
653 |a energy performance standard 
653 |a technology package 
653 |a energy-performance gap 
653 |a GCC 
653 |a Building Research Establishment Assessment Method (BREEAM) 
653 |a energy pile 
653 |a nearly zero energy building 
653 |a co-simulation 
653 |a new construction 
653 |a space heating 
653 |a building stock energy demand 
653 |a low power loss 
653 |a maximum power point tracking 
653 |a envelope thermography 
653 |a extensive green roof 
653 |a OPERA-MILP 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2218  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/46375  |7 0  |z DOAB: description of the publication