Entropy Applications in Environmental and Water Engineering

Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture,...

Full description

Saved in:
Bibliographic Details
Main Author: Cui, Huijuan (auth)
Other Authors: Sivakumar, Bellie (auth), Singh, Vijay P. (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
ANN
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 07415naaaa2201873uu 4500
001 doab_20_500_12854_46556
005 20210211
020 |a books978-3-03897-223-5 
020 |a 9783038972228 
024 7 |a 10.3390/books978-3-03897-223-5  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Cui, Huijuan  |4 auth 
700 1 |a Sivakumar, Bellie  |4 auth 
700 1 |a Singh, Vijay P.  |4 auth 
245 1 0 |a Entropy Applications in Environmental and Water Engineering 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (512 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a hydrological risk analysis 
653 |a modeling 
653 |a water level 
653 |a Poyang Lake basin 
653 |a trend 
653 |a composite multiscale sample entropy 
653 |a flood frequency analysis 
653 |a canopy flow 
653 |a precipitation 
653 |a water resources 
653 |a complex systems 
653 |a frequency analysis 
653 |a optimization 
653 |a combined forecast 
653 |a neural network forecast 
653 |a entropy spectral analysis time series analysis 
653 |a environmental engineering 
653 |a hydrometric network 
653 |a sea surface temperature 
653 |a kernel density estimation 
653 |a robustness 
653 |a turbulent flow 
653 |a entropy production 
653 |a connection entropy 
653 |a flux concentration relation 
653 |a turbulence 
653 |a tropical rainfall 
653 |a generalized gamma (GG) distribution 
653 |a multi-events 
653 |a El Niño 
653 |a joint entropy 
653 |a entropy weighting method 
653 |a Anhui Province 
653 |a changing environment 
653 |a complexity 
653 |a multiplicative cascades 
653 |a Tsallis entropy 
653 |a Hexi corridor 
653 |a coherent structures 
653 |a water resources vulnerability 
653 |a uncertainty 
653 |a variability 
653 |a flow entropy 
653 |a Hei River basin 
653 |a fuzzy analytic hierarchy process 
653 |a substitute 
653 |a crop yield 
653 |a conditional entropy production 
653 |a entropy 
653 |a flow duration curve 
653 |a mean annual runoff 
653 |a temperature 
653 |a hydrometeorological extremes 
653 |a resilience 
653 |a Loess Plateau 
653 |a information entropy 
653 |a scaling 
653 |a water distribution networks 
653 |a cross entropy 
653 |a randomness 
653 |a forewarning model 
653 |a entropy applications 
653 |a quaternary catchment 
653 |a spatio-temporal variability 
653 |a probability distribution function 
653 |a ant colony fuzzy clustering 
653 |a radar 
653 |a continuous probability distribution functions 
653 |a Shannon entropy 
653 |a informational entropy 
653 |a information 
653 |a confidence intervals 
653 |a marginal entropy 
653 |a rainfall forecast 
653 |a entropy of information 
653 |a streamflow 
653 |a power laws 
653 |a bootstrap aggregating 
653 |a maximum entropy-copula method 
653 |a spatial and dynamics characteristic 
653 |a projection pursuit 
653 |a set pair analysis 
653 |a entropy theory 
653 |a water resource carrying capacity 
653 |a entropy parameter 
653 |a precipitation frequency analysis 
653 |a principle of maximum entropy 
653 |a information theory 
653 |a stochastic processes 
653 |a network design 
653 |a complement 
653 |a cross elasticity 
653 |a climacogram 
653 |a methods of moments 
653 |a hydrology 
653 |a bagging 
653 |a principle of maximum entropy (POME) 
653 |a rainfall network 
653 |a entropy ensemble filter 
653 |a ensemble model simulation criterion 
653 |a Lagrangian function 
653 |a Beta-Lognormal model 
653 |a cross-entropy minimization 
653 |a ANN 
653 |a configurational entropy 
653 |a variation of information 
653 |a statistical scaling 
653 |a EEF method 
653 |a water monitoring 
653 |a maximum likelihood estimation 
653 |a GB2 distribution 
653 |a NDVI 
653 |a four-parameter exponential gamma distribution 
653 |a hydraulics 
653 |a spatial optimization 
653 |a Kolmogorov complexity 
653 |a bootstrap neural networks 
653 |a mutual information 
653 |a accelerating genetic algorithm 
653 |a groundwater depth 
653 |a rainfall 
653 |a tropical Pacific 
653 |a water engineering 
653 |a monthly streamflow forecasting 
653 |a ENSO 
653 |a nonlinear relation 
653 |a Bayesian technique 
653 |a non-point source pollution 
653 |a Burg entropy 
653 |a data-scarce 
653 |a scaling laws 
653 |a soil water content 
653 |a arid region 
653 |a land suitability evaluation 
653 |a information transfer 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1160  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/46556  |7 0  |z DOAB: description of the publication