Fluid Flow in Fractured Porous Media

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed-from laboratory experimentation to theoretical analysis and...

Full description

Saved in:
Bibliographic Details
Main Author: Liu, Richeng (auth)
Other Authors: Jiang, Yujing (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
MIP
SEM
XRD
gas
n/a
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 11650naaaa2203625uu 4500
001 doab_20_500_12854_47777
005 20210211
020 |a books978-3-03921-424-2 
020 |a 9783039214242 
020 |a 9783039214235 
024 7 |a 10.3390/books978-3-03921-424-2  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Liu, Richeng  |4 auth 
700 1 |a Jiang, Yujing  |4 auth 
245 1 0 |a Fluid Flow in Fractured Porous Media 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (578 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed-from laboratory experimentation to theoretical analysis and numerical simulations-and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a deformation feature 
653 |a minerals 
653 |a microstructure 
653 |a mixing 
653 |a permeability 
653 |a gas concentration 
653 |a water-rock interaction 
653 |a loose gangue backfill material 
653 |a unified pipe-network method 
653 |a fracture 
653 |a roof-cutting resistance 
653 |a crack 
653 |a similar-material 
653 |a movable fluid 
653 |a gob-side entry retaining (GER) 
653 |a rock-soil mechanics 
653 |a bed separation 
653 |a orthogonal tests 
653 |a charge separation 
653 |a water soaked height 
653 |a fluid flow in reclaimed soil 
653 |a laboratory experiment 
653 |a longwall mining 
653 |a grading broken gangue 
653 |a MIP 
653 |a elastic modulus 
653 |a effective stress 
653 |a permeability coefficient 
653 |a mixer 
653 |a naturally fracture 
653 |a SEM 
653 |a microstructure characteristics 
653 |a artificial joint rock 
653 |a fractured rock 
653 |a strata movement 
653 |a conservative solute 
653 |a particle velocity 
653 |a dry-wet cycles 
653 |a hydraulic fractures 
653 |a numerical calculation 
653 |a mechanical behaviors 
653 |a normalized conductivity-influence function 
653 |a fractured porous rock mass 
653 |a PPCZ 
653 |a segmented grouting 
653 |a non-aqueous phase liquid 
653 |a intelligent torque rheometer 
653 |a numerical analysis 
653 |a temperature 
653 |a unsaturated soil 
653 |a uniaxial compressive strength 
653 |a mine shaft 
653 |a coalbed methane (CBM) 
653 |a nonlinear flow in fractured porous media 
653 |a similar simulation 
653 |a forecasting 
653 |a tight sandstones 
653 |a oriented perforation 
653 |a hydro-mechanical coupling 
653 |a constant normal stiffness conditions 
653 |a cohesive soils 
653 |a layered progressive grouting 
653 |a chemical grouts 
653 |a grain size of sand 
653 |a Darcy's law 
653 |a soft coal masses 
653 |a hydro-power 
653 |a cyclic heating and cooling 
653 |a cohesive element method 
653 |a cement-based paste discharge 
653 |a tectonically deformed coal 
653 |a split grouting 
653 |a fault water inrush 
653 |a filtration effects 
653 |a T-stress 
653 |a particle flow modeling 
653 |a new cementitious material 
653 |a strength 
653 |a stabilization 
653 |a fractured porous medium 
653 |a brine concentration 
653 |a initial water contained in sand 
653 |a XRD 
653 |a fracture criteria 
653 |a hydraulic conductivity 
653 |a roadway deformation 
653 |a backfill mining 
653 |a adsorption/desorption properties 
653 |a pore pressure 
653 |a roughness 
653 |a cement-silicate grout 
653 |a compressive stress 
653 |a discrete element method 
653 |a dynamic characteristics 
653 |a strain-based percolation model 
653 |a thermal-hydrological-chemical interactions 
653 |a pore distribution characteristics 
653 |a transversely isotropic rocks 
653 |a nitric acid modification 
653 |a disaster-causing mechanism 
653 |a CH4 seepage 
653 |a crack distribution characteristics 
653 |a micro-CT 
653 |a relief excavation 
653 |a Darcy flow 
653 |a hydraulic fracturing 
653 |a mixed-form formulation 
653 |a propagation 
653 |a scanning electron microscope (SEM) images 
653 |a propagation pattern 
653 |a consolidation process 
653 |a rheological deformation 
653 |a gas adsorption 
653 |a soft filling medium 
653 |a ground pressure 
653 |a orthogonal ratio test 
653 |a rock fracture 
653 |a coal seams 
653 |a high-steep slope 
653 |a interface 
653 |a orthogonal test 
653 |a stress interference 
653 |a physical and mechanical parameters 
653 |a fracture propagation 
653 |a fluid-solid coupling theory 
653 |a coupling model 
653 |a surface characteristics 
653 |a numerical manifold method 
653 |a gas 
653 |a lignite 
653 |a water inrush prevention 
653 |a coupled THM model 
653 |a hard and thick magmatic rocks 
653 |a Ordos Basin 
653 |a porosity 
653 |a damage mechanics 
653 |a seepage 
653 |a degradation mechanism 
653 |a high temperature 
653 |a visualization system 
653 |a bentonite-sand mixtures 
653 |a contamination 
653 |a conductivity-influence function 
653 |a water-rock interaction 
653 |a deterioration 
653 |a seepage pressure 
653 |a glutenite 
653 |a adhesion efficiency 
653 |a mechanical behavior transition 
653 |a bedding plane orientation 
653 |a n/a 
653 |a enhanced gas recovery 
653 |a debris-resisting barriers 
653 |a reinforcement mechanism 
653 |a on-site monitoring 
653 |a geophysical prospecting 
653 |a cyclic wetting-drying 
653 |a scoops3D 
653 |a semi-analytical solution 
653 |a enhanced permeability 
653 |a management period 
653 |a seepage control 
653 |a deformation 
653 |a Yellow River Embankment 
653 |a impeded drainage boundary 
653 |a rheological test 
653 |a circular closed reservoir 
653 |a grout penetration 
653 |a viscoelastic fluid 
653 |a coal-like material 
653 |a paste-like slurry 
653 |a floor failure depth 
653 |a supercritical CO2 
653 |a gravel 
653 |a numerical model 
653 |a fractal 
653 |a gas-bearing coal 
653 |a shear-flow coupled test 
653 |a rheological limit strain 
653 |a CO2 flooding 
653 |a flotation 
653 |a goaf 
653 |a slope stability 
653 |a damage 
653 |a coal and gas outburst 
653 |a hydraulic fracture 
653 |a anisotropy 
653 |a high-order 
653 |a effluents 
653 |a FLAC 
653 |a limestone roof 
653 |a sandstone 
653 |a TG/DTG 
653 |a Xinjiang 
653 |a two-phase flow 
653 |a model experiment 
653 |a coal particle 
653 |a volumetric strain 
653 |a failure mode 
653 |a land reclamation 
653 |a sandstone and mudstone particles 
653 |a contiguous seams 
653 |a CO2 geological storage 
653 |a numerical simulation 
653 |a geogrid 
653 |a stress relief 
653 |a optimum proportioning 
653 |a roadside backfill body (RBB) 
653 |a pervious concrete 
653 |a mudstone 
653 |a hydraulic fracture network 
653 |a grouted sand 
653 |a fractal pore characteristics 
653 |a refraction law 
653 |a segmented rheological model 
653 |a ductile failure 
653 |a heterogeneity 
653 |a flow law 
653 |a fracture closure 
653 |a coal measures sandstone 
653 |a tight sandstone gas reservoirs 
653 |a gob behaviors 
653 |a water-dripping roadway 
653 |a creep characteristics 
653 |a internal erosion 
653 |a warning levels of fault water inrush 
653 |a hydraulic aperture 
653 |a bolt support 
653 |a discontinuous natural fracture 
653 |a microscopic morphology 
653 |a critical hydraulic gradient 
653 |a mixed mode fracture resistance 
653 |a differential settlement 
653 |a alternate strata 
653 |a finite element method 
653 |a crushing ratio 
653 |a chloride 
653 |a glauberite cavern for storing oil &amp 
653 |a macroscopic mechanical behaviors 
653 |a collision angle 
653 |a adsorption performance 
653 |a failure mechanism 
653 |a mechanical properties 
653 |a transmissivity 
653 |a damage evolution 
653 |a gas fracturing 
653 |a multitude parameters 
653 |a deviatoric stress 
653 |a Jiaohe 
653 |a coal 
653 |a soil properties 
653 |a acoustic emission 
653 |a pore structure 
653 |a grouting experiment 
653 |a concrete 
653 |a confining pressures 
653 |a green mining 
653 |a gas drainage 
653 |a fluid viscosity 
653 |a compression deformation 
653 |a Unsaturation 
653 |a adsorption-desorption 
653 |a seepage-creep 
653 |a constitutive model 
653 |a soil particle size 
653 |a Pseudo Steady-State (PPS) constant 
653 |a soil-structure interface 
653 |a debris flow 
653 |a fracture grouting 
653 |a initial settlement position 
653 |a regression equation 
653 |a electrical potential 
653 |a secondary fracture 
653 |a surrounding rock 
653 |a solid backfill coal mining 
653 |a time variation 
653 |a excess pore-pressures 
653 |a finite-conductivity fracture 
653 |a permeability characteristics 
653 |a rainfall-unstable soil coupling mechanism(R-USCM) 
653 |a shaft lining 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1625  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/47777  |7 0  |z DOAB: description of the publication