Glassy Materials Based Microdevices

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating...

Full description

Saved in:
Bibliographic Details
Main Author: Righini, Nicoletta (auth)
Other Authors: Righini, Giancarlo (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05547naaaa2201309uu 4500
001 doab_20_500_12854_48645
005 20210211
020 |a books978-3-03897-619-6 
020 |a 9783038976189 
024 7 |a 10.3390/books978-3-03897-619-6  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Righini, Nicoletta  |4 auth 
700 1 |a Righini, Giancarlo  |4 auth 
245 1 0 |a Glassy Materials Based Microdevices 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (284 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a enhanced boiling heat transfer 
653 |a microfluidic devices 
653 |a thermal insulation 
653 |a fibers 
653 |a lab-on-a-chip 
653 |a precision glass molding 
653 |a device simulations 
653 |a spray pyrolysis technique 
653 |a dielectric materials 
653 |a detection of small molecules 
653 |a roughness 
653 |a direct metal forming 
653 |a micro-grinding 
653 |a MEMS 
653 |a chalcogenide glass 
653 |a whispering gallery mode 
653 |a down-shifting 
653 |a glass 
653 |a optofluidic microbubble resonator 
653 |a luminescent materials 
653 |a filling ratio 
653 |a 2D colloidal crystal 
653 |a waveguides 
653 |a micro-crack propagation 
653 |a fluid displacement 
653 |a biosensors 
653 |a freeform optics 
653 |a microstructured optical fibers 
653 |a laser micromachining 
653 |a polymeric microfluidic flow cytometry 
653 |a luminescence 
653 |a frequency conversion 
653 |a light 
653 |a micro/nano patterning 
653 |a resonator 
653 |a fiber coupling 
653 |a distributed sensing 
653 |a severing force 
653 |a microsphere 
653 |a alkali cells 
653 |a microfabrication 
653 |a hybrid materials 
653 |a enclosed microstructures 
653 |a infrared optics 
653 |a glassy carbon micromold 
653 |a Ag nanoaggregates 
653 |a microfluidics 
653 |a chemical/biological sensing 
653 |a porous media 
653 |a atomic spectroscopy 
653 |a quartz glass 
653 |a solar energy 
653 |a diffusion 
653 |a soft colloidal lithography 
653 |a groove 
653 |a compound glass 
653 |a metallic microstructure 
653 |a whispering gallery modes 
653 |a sol-gel 
653 |a communications 
653 |a femtosecond laser 
653 |a optofluidics 
653 |a europium 
653 |a aspherical lens 
653 |a long period grating 
653 |a optical cells 
653 |a polymers 
653 |a lasing 
653 |a photovoltaics 
653 |a microresonator 
653 |a sensing 
653 |a microspheres 
653 |a light localization 
653 |a Yb<sup>3+</sup> ions 
653 |a laser materials processing 
653 |a photonic microdevices 
653 |a MEMS vapor cells 
653 |a microtechnology 
653 |a ultrafast laser micromachining 
653 |a photon 
653 |a single-cell protein quantification 
653 |a strain microsensor 
653 |a label-free sensor 
653 |a microdevices 
653 |a ultrafast laser welding 
653 |a nuclear fusion 
653 |a vectorial strain gauge 
653 |a single-cell analysis 
653 |a glass molding process 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1155  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/48645  |7 0  |z DOAB: description of the publication