Iron as Therapeutic Targets in Human Diseases Volume 1

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the...

Full description

Saved in:
Bibliographic Details
Main Author: Gozzelino, Raffaella (auth)
Other Authors: Poli, Maura (auth), Arosio, Paolo (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
MHC
n/a
Hfe
HFE
TNF
SNC
pig
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 08938naaaa2202677uu 4500
001 doab_20_500_12854_50679
005 20210211
020 |a books978-3-03928-083-4 
020 |a 9783039280827 
020 |a 9783039280834 
024 7 |a 10.3390/books978-3-03928-083-4  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Gozzelino, Raffaella  |4 auth 
700 1 |a Poli, Maura  |4 auth 
700 1 |a Arosio, Paolo  |4 auth 
245 1 0 |a Iron as Therapeutic Targets in Human Diseases Volume 1 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (472 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a developmental 
653 |a Anemia of chronic disease 
653 |a neurodegeneration 
653 |a supplementation 
653 |a MHC 
653 |a iron chelation therapy 
653 |a osteoblast 
653 |a serum biomarker 
653 |a FeSO4 
653 |a haptoglobin 
653 |a prevention 
653 |a brain development 
653 |a pituitary 
653 |a trauma 
653 |a hepcidin 
653 |a Alzheimer's disease 
653 |a chaotropes 
653 |a social behavior 
653 |a Africa 
653 |a macrophage 
653 |a anemia of inflammation 
653 |a Tfr2 
653 |a chelation 
653 |a cardiomyocyte 
653 |a IV iron therapy 
653 |a Oxidative stress 
653 |a treatment 
653 |a chronic kidney disease 
653 |a iron homeostasis 
653 |a oxygen sensing 
653 |a iron chelators 
653 |a age-related macular degeneration (AMD) 
653 |a pharmaceutical targets 
653 |a non-transferrin-bound iron (NTBI) 
653 |a iron dextran 
653 |a pulmonary arterial hypertension 
653 |a labile iron 
653 |a low and middle income countries 
653 |a ferroportin 
653 |a gut microbiota 
653 |a reducibility 
653 |a non-HFE 
653 |a oxidative stress 
653 |a antitumor compound 
653 |a senescence 
653 |a electron transfer 
653 |a nanotechnology 
653 |a iron deficiency 
653 |a neonatal period 
653 |a heme oxygenase 
653 |a hypoxia 
653 |a Anemia 
653 |a NCOA4 
653 |a patient blood management 
653 |a microbiome 
653 |a anemia 
653 |a iron mobilization 
653 |a iron release 
653 |a phlebotomy 
653 |a peritoneal dialysis 
653 |a Friedreich Ataxia 
653 |a ferritin 
653 |a CD8+ T cells 
653 |a M cells 
653 |a neurodegenerative disease 
653 |a NaFeEDTA 
653 |a vascular calcification 
653 |a cinnamic acid derivatives 
653 |a oral iron salts 
653 |a lipid 
653 |a acute lung injury 
653 |a Iron-sulfur 
653 |a Interleukin-6 
653 |a neurodegeneration with brain iron accumulation 
653 |a macrophages 
653 |a erythroblastic islands 
653 |a cystic fibrosis 
653 |a neuroimmune responses 
653 |a flavin nucleotide 
653 |a hemopexin 
653 |a Iron chelators 
653 |a nutrient iron 
653 |a developing countries 
653 |a hereditary hypoferritinemia 
653 |a iron 
653 |a cancer 
653 |a Indonesia 
653 |a n/a 
653 |a Hfe 
653 |a HFE 
653 |a chronic heart failure 
653 |a iron supplementation 
653 |a intestinal inflammation 
653 |a TNF 
653 |a chelators 
653 |a hemolysis 
653 |a children 
653 |a pulmonary arterial smooth muscle cells 
653 |a cytokines 
653 |a didox 
653 |a intravenous iron 
653 |a T lymphocytes 
653 |a colorectal cancer 
653 |a infants 
653 |a liver 
653 |a ferritinophagy 
653 |a hereditary hyperferritinemia 
653 |a SCFA 
653 |a rheumatoid arthritis 
653 |a membrane interactions 
653 |a Sucrosomial® iron 
653 |a lung 
653 |a Kupffer cell 
653 |a iron chelation 
653 |a erythrophagocytosis 
653 |a acute kidney injury 
653 |a neurophysiology 
653 |a iron transporters 
653 |a iron absorption 
653 |a infection 
653 |a ferroptosis 
653 |a fluorescent iron chelator 
653 |a neonatal 
653 |a SNC 
653 |a immunity 
653 |a mycobacteria 
653 |a non-haem iron 
653 |a natural history 
653 |a 3-hydroxy-4-pyridinone 
653 |a haem 
653 |a inflammation 
653 |a bone homeostasis 
653 |a cardiovascular disease 
653 |a heme 
653 |a heme homeostasis 
653 |a protein binding 
653 |a brain 
653 |a iron deficiency anemia 
653 |a Fe2+-chelating activity 
653 |a bioengineering 
653 |a Mek/Erk 
653 |a Bmp/Smad 
653 |a iron delivery 
653 |a genetic hemochromatosis 
653 |a osteoclast 
653 |a histidine 
653 |a rhodamine 
653 |a COPD 
653 |a hemorrhage 
653 |a antibacterial activity 
653 |a bacteria 
653 |a SLC40A1 
653 |a transferrin receptor 
653 |a drug delivery 
653 |a nanocage 
653 |a soybean seed ferritin 
653 |a pig 
653 |a iron metabolism 
653 |a kidney 
653 |a innate immunity 
653 |a cataracts syndrome 
653 |a erythropoiesis 
653 |a obesity 
653 |a mucosal immunity 
653 |a iron overload 
653 |a fluorophore 
653 |a binding ability 
653 |a inflammatory bowel disease (IBD) 
653 |a osteoporosis 
653 |a biomarker 
653 |a bioavailability 
653 |a adverse event profile 
653 |a metabolism 
653 |a iron-carbohydrate complex 
653 |a kinetics 
653 |a flavonoids 
653 |a iron regulatory proteins 
653 |a lung infection 
653 |a non transferrin bound iron 
653 |a central nurse macrophage 
653 |a iron processing 
653 |a malaria 
653 |a neurodegenerative diseases 
653 |a multifunctional iron chelators 
653 |a retina 
653 |a neuroinflammation 
653 |a anti-hepcidin therapy 
653 |a lung diseases 
653 |a anaemia 
653 |a RRM2 
653 |a cognition 
653 |a mitochondria 
653 |a therapy 
653 |a NBIA 
653 |a red pulp macrophage 
653 |a efficacy 
653 |a hemochromatosis 
653 |a tolerability 
653 |a oral iron therapy 
653 |a growth 
653 |a venesections 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2016  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/50679  |7 0  |z DOAB: description of the publication