Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires...

Full description

Saved in:
Bibliographic Details
Main Author: Suñé, Jordi (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04448naaaa2200961uu 4500
001 doab_20_500_12854_53144
005 20210211
020 |a books978-3-03928-577-8 
020 |a 9783039285761 
020 |a 9783039285778 
024 7 |a 10.3390/books978-3-03928-577-8  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Suñé, Jordi  |4 auth 
245 1 0 |a Memristors for Neuromorphic Circuits and Artificial Intelligence Applications 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (244 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a graphene oxide 
653 |a artificial neural network 
653 |a simulation 
653 |a neural networks 
653 |a STDP 
653 |a neuromorphics 
653 |a spiking neural network 
653 |a artificial intelligence 
653 |a hierarchical temporal memory 
653 |a synaptic weight 
653 |a optimization 
653 |a transistor-like devices 
653 |a multiscale modeling 
653 |a memristor crossbar 
653 |a spike-timing-dependent plasticity 
653 |a memristor-CMOS hybrid circuit 
653 |a pavlov 
653 |a wire resistance 
653 |a AI 
653 |a neocortex 
653 |a synapse 
653 |a character recognition 
653 |a resistive switching 
653 |a electronic synapses 
653 |a defect-tolerant spatial pooling 
653 |a emulator 
653 |a compact model 
653 |a deep learning networks 
653 |a artificial synapse 
653 |a circuit design 
653 |a memristors 
653 |a neuromorphic engineering 
653 |a memristive devices 
653 |a OxRAM 
653 |a neural network hardware 
653 |a sensory and hippocampal responses 
653 |a neuromorphic hardware 
653 |a boost-factor adjustment 
653 |a RRAM 
653 |a variability 
653 |a Flash memories 
653 |a neuromorphic 
653 |a reinforcement learning 
653 |a laser 
653 |a memristor 
653 |a hardware-based deep learning ICs 
653 |a temporal pooling 
653 |a self-organization maps 
653 |a crossbar array 
653 |a pattern recognition 
653 |a strongly correlated oxides 
653 |a vertical RRAM 
653 |a autocovariance 
653 |a neuromorphic computing 
653 |a synaptic device 
653 |a cortical neurons 
653 |a time series modeling 
653 |a spiking neural networks 
653 |a neuromorphic systems 
653 |a synaptic plasticity 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2171  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/53144  |7 0  |z DOAB: description of the publication