Micro/Nano Devices for Blood Analysis

The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there...

Full description

Saved in:
Bibliographic Details
Main Author: Minas, Graça (auth)
Other Authors: Catarino, Susana (auth), Lima, Rui A. (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05113naaaa2200913uu 4500
001 doab_20_500_12854_53381
005 20210211
020 |a books978-3-03921-825-7 
020 |a 9783039218240 
020 |a 9783039218257 
024 7 |a 10.3390/books978-3-03921-825-7  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Minas, Graça  |4 auth 
700 1 |a Catarino, Susana  |4 auth 
700 1 |a Lima, Rui A.  |4 auth 
245 1 0 |a Micro/Nano Devices for Blood Analysis 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (174 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a red blood cells 
653 |a n/a 
653 |a metastatic potential 
653 |a microfluidic devices 
653 |a microstructure 
653 |a lens-less 
653 |a regression analysis 
653 |a power-law fluid 
653 |a narrow rectangular microchannel 
653 |a biomedical coatings 
653 |a XTC-YF cells 
653 |a red blood cell (RBC) aggregation 
653 |a Y-27632 
653 |a finite element method 
653 |a POCT 
653 |a CEA detection 
653 |a immersed boundary method 
653 |a suspension 
653 |a particle tracking velocimetry 
653 |a biomicrofluidics 
653 |a computational fluid dynamics 
653 |a red blood cells (RBCs) 
653 |a modified conventional erythrocyte sedimentation rate (ESR) method 
653 |a computational biomechanics 
653 |a RBC aggregation index 
653 |a microfabrication 
653 |a microfluidics 
653 |a morphological analysis 
653 |a chronic renal disease 
653 |a multiple microfluidic channels 
653 |a centrifugal microfluidic device 
653 |a deformability 
653 |a master molder using xurography technique 
653 |a fluorescent chemiluminescence 
653 |a hydrophobic dish 
653 |a pressure-driven flow 
653 |a cell deformability 
653 |a mechanophenotyping 
653 |a separation and sorting techniques 
653 |a density medium 
653 |a cell adhesion 
653 |a polymers 
653 |a rheology 
653 |a circular microchannel 
653 |a blood on chips 
653 |a multinucleated cells 
653 |a velocity 
653 |a cell analysis 
653 |a microfluidic chip 
653 |a twin-image removal 
653 |a cancer 
653 |a Lattice-Boltzmann method 
653 |a diabetes 
653 |a hyperbolic microchannel 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1869  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/53381  |7 0  |z DOAB: description of the publication