Microbial Fuel Cells 2018

The rapid growth of global energy consumption and simultaneous waste discharge requires more sustainable energy production and waste disposal/recovery technology. In this respect, microbial fuel cell and bioelectrochemical systems have been highlighted to provide a platform for waste-to-energy and c...

Full description

Saved in:
Bibliographic Details
Main Author: Kim, Jung Rae (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03130naaaa2200649uu 4500
001 doab_20_500_12854_53400
005 20210211
020 |a books978-3-03921-534-8 
020 |a 9783039215355 
020 |a 9783039215348 
024 7 |a 10.3390/books978-3-03921-534-8  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Kim, Jung Rae  |4 auth 
245 1 0 |a Microbial Fuel Cells 2018 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (84 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The rapid growth of global energy consumption and simultaneous waste discharge requires more sustainable energy production and waste disposal/recovery technology. In this respect, microbial fuel cell and bioelectrochemical systems have been highlighted to provide a platform for waste-to-energy and cost-efficient treatment. Microbial fuel cell technology has also contributed to both academia and industry through the development of breakthrough sustainable technologies, enabling cross- and multi-disciplinary approaches in microbiology, biotechnology, electrochemistry, and bioprocess engineering. To further spread these technologies and to help the implementation of microbial fuel cells, this Special Issue, entitled "Microbial Fuel Cells 2018", was proposed for the international journal Energies. This Special Issue mainly covers original research and studies related to the above-mentioned topic, including, but not limited to, bioelectricity generation, microbial electrochemistry, useful resource recovery, system and process design, and the implementation of microbial fuel cells. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a biogenic conversion 
653 |a power density 
653 |a treatment efficiency 
653 |a microbial fuel cell (MFC) 
653 |a flow rate 
653 |a hydrogen production 
653 |a bioelectrochemical system 
653 |a C1 gas 
653 |a acetate 
653 |a bioelectrochemical reactor 
653 |a TiO2 nanotube 
653 |a environmental engineering 
653 |a lignite 
653 |a dye decolorization 
653 |a electrodialysis 
653 |a Ni-Co alloy 
653 |a dilution rate 
653 |a substrate supply rate 
653 |a carbon monoxide 
653 |a inhibition 
653 |a microbial fuel cell 
653 |a acetosyringone 
653 |a anodic volume 
653 |a microbial electrolysis cell 
653 |a syringaldehyde 
653 |a laccase 
653 |a methane 
653 |a anode distance 
653 |a coal 
653 |a power generation 
653 |a yeast wastewater 
653 |a cathode 
653 |a renewable energy source 
653 |a natural redox mediators 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1547  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/53400  |7 0  |z DOAB: description of the publication