Polymeric Foams

Advances in nanotechnology have boosted the development of more efficient materials, with emerging sectors (electronics, energy, aerospace, etc.) demanding novel materials to fulfill the complex technical requirements of their products. This is the case of polymeric foams, which may display good str...

Full description

Saved in:
Bibliographic Details
Main Author: Velasco, José Ignacio (auth)
Other Authors: Antunes, Marcelo (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
n/a
1
3
PZT
EMI
PUR
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05739naaaa2201429uu 4500
001 doab_20_500_12854_56639
005 20210211
020 |a books978-3-03921-633-8 
020 |a 9783039216321 
020 |a 9783039216338 
024 7 |a 10.3390/books978-3-03921-633-8  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Velasco, José Ignacio  |4 auth 
700 1 |a Antunes, Marcelo  |4 auth 
245 1 0 |a Polymeric Foams 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (322 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Advances in nanotechnology have boosted the development of more efficient materials, with emerging sectors (electronics, energy, aerospace, etc.) demanding novel materials to fulfill the complex technical requirements of their products. This is the case of polymeric foams, which may display good structural properties alongside functional characteristics through a complex composition and (micro)structure in which a gas phase is combined with rigid ones, mainly based on nanoparticles, dispersed throughout the polymer matrix. In recent years, there has been an important impulse in the development of nanocomposite foams, extending the concept of nanocomposites to the field of cellular materials. This, alongside developments in new advanced foaming technologies which have allowed the generation of foams with micro, sub-micro, and even nanocellular structures, has extended the applications of more traditional foams in terms of weight reduction, damping, and thermal and/or acoustic insulation to novel possibilities, such as electromagnetic interference (EMI) shielding. This Special Issue, which consists of a total of 22 articles, including one review article written by research groups of experts in the field, considers recent research on novel polymer-based foams in all their aspects: design, composition, processing and fabrication, microstructure, characterization and analysis, applications and service behavior, recycling and reuse, etc. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a graphene oxide 
653 |a n/a 
653 |a microstructure 
653 |a multi-objective particle swarm optimization 
653 |a electromagnetic wave absorption 
653 |a polyamide 
653 |a lignin 
653 |a expandable microspheres 
653 |a surfactants 
653 |a aluminum microfibers 
653 |a biomaterials 
653 |a permittivity 
653 |a compression properties 
653 |a shock compression 
653 |a syntactic foams 
653 |a 1 
653 |a impact wedge-peel test 
653 |a phenolic foams 
653 |a 3 
653 |a foam extrusion 
653 |a energy conservation 
653 |a heat transfer 
653 |a heterogeneous nucleation 
653 |a polyurethane foam 
653 |a leaching test 
653 |a functional 
653 |a cellulose foam 
653 |a impact property 
653 |a foam injection molding 
653 |a itaconic acid 
653 |a composites 
653 |a foaming quality 
653 |a phosphorus flame retardants 
653 |a polymer waste 
653 |a metallic tube 
653 |a 5-benzene-trisamides 
653 |a polyurethane foam composites 
653 |a polyetherimide foams 
653 |a scCO2 
653 |a Ethylene Propylene Diene Monomer 
653 |a thermal conductivity 
653 |a ethyl cellulose 
653 |a super critical CO2 
653 |a thermal insulation 
653 |a cell nucleation 
653 |a crystalline 
653 |a polypropylene 
653 |a PZT 
653 |a burning characteristic 
653 |a foams 
653 |a quasi-static compression tests 
653 |a flame-retardant ABS microcellular foams 
653 |a nanotubes 
653 |a conductivity 
653 |a energy absorption capability 
653 |a intrinsic toughness 
653 |a ternary synergistic effect 
653 |a multilayers 
653 |a absorbent PMI foam 
653 |a semi-rigid polyurethane foams 
653 |a phosphorus 
653 |a EMI 
653 |a supramolecular additives 
653 |a MuCell® injection-molding foaming 
653 |a piezocomposite 
653 |a ultrasonication 
653 |a scCO2 foaming 
653 |a automobile structural adhesives 
653 |a thermogravimetric analysis 
653 |a rigid polyurethane foam 
653 |a failure mechanism 
653 |a mechanical properties 
653 |a multifunctional foams 
653 |a SANS 
653 |a fluoelastomer 
653 |a sound absorption coefficient 
653 |a acoustic performances 
653 |a functional foam 
653 |a foam morphology 
653 |a mechanical property 
653 |a polystyrene foams 
653 |a piezoelectric 
653 |a graphene 
653 |a Pluronic 
653 |a epoxy composite foam adhesive 
653 |a polymers 
653 |a flame retardancy 
653 |a core-shell rubber 
653 |a extrusion foaming 
653 |a equation of state 
653 |a cellulose nanofiber 
653 |a epoxy 
653 |a DOPO 
653 |a PUR 
653 |a grey relational analysis 
653 |a activation energies 
653 |a adjacent façade 
653 |a electrical conductivity 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1796  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/56639  |7 0  |z DOAB: description of the publication