Remote Sensing of Leaf Area Index (LAI) and Other Vegetation Parameters

Monitoring of vegetation structure and functioning is critical to modeling terrestrial ecosystems and energy cycles. In particular, leaf area index (LAI) is an important structural property of vegetation used in many land surface vegetation, climate, and crop production models. Canopy structure (LAI...

Full description

Saved in:
Bibliographic Details
Main Author: Sanchez, Juanma Lopez (auth)
Other Authors: Fang, Hongliang (auth), García-Haro, Francisco Javier (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
LAI
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05310naaaa2201309uu 4500
001 doab_20_500_12854_58176
005 20210212
020 |a books978-3-03921-240-8 
020 |a 9783039212392 
020 |a 9783039212408 
024 7 |a 10.3390/books978-3-03921-240-8  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Sanchez, Juanma Lopez  |4 auth 
700 1 |a Fang, Hongliang  |4 auth 
700 1 |a García-Haro, Francisco Javier  |4 auth 
245 1 0 |a Remote Sensing of Leaf Area Index (LAI) and Other Vegetation Parameters 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (334 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Monitoring of vegetation structure and functioning is critical to modeling terrestrial ecosystems and energy cycles. In particular, leaf area index (LAI) is an important structural property of vegetation used in many land surface vegetation, climate, and crop production models. Canopy structure (LAI, fCover, plant height, and biomass) and biochemical parameters (leaf pigmentation and water content) directly influence the radiative transfer process of sunlight in vegetation, determining the amount of radiation measured by passive sensors in the visible and infrared portions of the electromagnetic spectrum. Optical remote sensing (RS) methods build relationships exploiting in situ measurements and/or as outputs of physical canopy radiative transfer models. The increased availability of passive (radar and LiDAR) RS data has fostered their use in many applications for the analysis of land surface properties and processes, thanks also to their insensitivity to weather conditions and the capability to exploit rich structural and textural information. Data fusion and multi-sensor integration techniques are pressing topics to fully exploit the information conveyed by both optical and microwave bands. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a artificial neural network 
653 |a downscaling 
653 |a simulation 
653 |a 3D point cloud 
653 |a European beech 
653 |a consistency 
653 |a adaptive threshold 
653 |a evaluation 
653 |a photosynthesis 
653 |a geographic information system 
653 |a P-band PolInSAR 
653 |a validation 
653 |a density-based clustering 
653 |a structure from motion (SfM) 
653 |a EPIC 
653 |a Tanzania 
653 |a signal attenuation 
653 |a trunk 
653 |a canopy closure 
653 |a REDD+ 
653 |a unmanned aerial vehicle (UAV) 
653 |a forest 
653 |a recursive feature elimination 
653 |a Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) 
653 |a aboveground biomass 
653 |a random forest 
653 |a uncertainty 
653 |a household survey 
653 |a spectral information 
653 |a forests biomass 
653 |a root biomass 
653 |a biomass 
653 |a unmanned aerial vehicle 
653 |a Brazilian Amazon 
653 |a VIIRS 
653 |a global positioning system 
653 |a LAI 
653 |a photochemical reflectance index (PRI) 
653 |a allometric scaling and resource limitation 
653 |a R690/R630 
653 |a modelling aboveground biomass 
653 |a leaf area index 
653 |a forest degradation 
653 |a spectral analyses 
653 |a terrestrial laser scanning 
653 |a BAAPA 
653 |a leaf area index (LAI) 
653 |a stem volume estimation 
653 |a tomographic profiles 
653 |a polarization coherence tomography (PCT) 
653 |a canopy gap fraction 
653 |a automated classification 
653 |a HemiView 
653 |a remote sensing 
653 |a multisource remote sensing 
653 |a Pléiades imagery 
653 |a photogrammetric point cloud 
653 |a farm types 
653 |a terrestrial LiDAR 
653 |a altitude 
653 |a RapidEye 
653 |a forest aboveground biomass 
653 |a recovery 
653 |a southern U.S. forests 
653 |a NDVI 
653 |a machine-learning 
653 |a conifer forest 
653 |a satellite 
653 |a chlorophyll fluorescence (ChlF) 
653 |a tree heights 
653 |a phenology 
653 |a point cloud 
653 |a local maxima 
653 |a clumping index 
653 |a MODIS 
653 |a digital aerial photograph 
653 |a Mediterranean 
653 |a hemispherical sky-oriented photo 
653 |a managed temperate coniferous forests 
653 |a fixed tree window size 
653 |a drought 
653 |a GLAS 
653 |a smartphone-based method 
653 |a forest above ground biomass (AGB) 
653 |a forest inventory 
653 |a over and understory cover 
653 |a sampling design 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1542  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/58176  |7 0  |z DOAB: description of the publication