Salinity Tolerance in Plants

Salt stress is one of the most damaging abiotic stresses because most crop plants are susceptible to salinity to different degrees. According to the FAO, about 800 million Has of land are affected by salinity worldwide. Unfortunately, this situation will worsen in the context of climate change, wher...

Full description

Saved in:
Bibliographic Details
Main Author: Antonio Hernández Cortés, Jose (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
n/a
ABA
NMT
SOS
ROP
ROS
Na+
VOZ
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05281naaaa2201429uu 4500
001 doab_20_500_12854_58813
005 20210212
020 |a books978-3-03921-027-5 
020 |a 9783039210275 
020 |a 9783039210268 
024 7 |a 10.3390/books978-3-03921-027-5  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Antonio Hernández Cortés, Jose  |4 auth 
245 1 0 |a Salinity Tolerance in Plants 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (422 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Salt stress is one of the most damaging abiotic stresses because most crop plants are susceptible to salinity to different degrees. According to the FAO, about 800 million Has of land are affected by salinity worldwide. Unfortunately, this situation will worsen in the context of climate change, where there will be an overall increase in temperature and a decrease in average annual rainfall worldwide. This Special Issue presents different research works and reviews on the response of plants to salinity, focused from different points of view: physiological, biochemical, and molecular levels. Although an important part of the studies on the response to salinity have been carried out with Arabidopsis plants, the use of other species with agronomic interest is also notable, including woody plants. Most of the conducted studies in this Special Issue were focused on the identification and characterization of candidate genes for salt tolerance in higher plants. This identification would provide valuable information about the molecular and genetic mechanisms involved in the salt tolerance response, and it also supplies important resources to breeding programs for salt tolerance in plants. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a soluble nutrients 
653 |a transcription factor 
653 |a n/a 
653 |a CDPK 
653 |a salicylic acid 
653 |a antioxidant enzymes 
653 |a light saturation point 
653 |a phytohormone 
653 |a ion homeostasis 
653 |a antioxidant systems 
653 |a photosynthesis 
653 |a Chlamydomonas reinhardtii 
653 |a high salinity 
653 |a nitric oxide 
653 |a poplars (Populus) 
653 |a root activity 
653 |a abiotic stresses 
653 |a transcriptional activator 
653 |a germination 
653 |a ABA 
653 |a transcriptome 
653 |a mandelonitrile 
653 |a redox homeostasis 
653 |a association mapping. 
653 |a redox signalling 
653 |a osmotic stress 
653 |a flax 
653 |a strigolactones 
653 |a salt tolerance 
653 |a nucleolin 
653 |a CaDHN5 
653 |a photosystem 
653 |a EST-SSR 
653 |a NMT 
653 |a Sapium sebiferum 
653 |a Gossypium arboretum 
653 |a SOS 
653 |a Brassica napus 
653 |a SnRK2 
653 |a HKT1 
653 |a grapevine 
653 |a transcription factors 
653 |a cucumber 
653 |a underpinnings of salt stress responses 
653 |a abiotic stress 
653 |a Arabidopsis thaliana 
653 |a RNA-seq 
653 |a halophytes 
653 |a single nucleotide polymorphisms 
653 |a dehydrin 
653 |a J8-1 plum line 
653 |a chlorophyll fluorescence 
653 |a natural variation 
653 |a hydrogen peroxide 
653 |a salt stress 
653 |a lipid peroxidation 
653 |a ROS detoxification 
653 |a ROP 
653 |a molecular mechanisms 
653 |a cell membrane injury 
653 |a booting stage 
653 |a ascorbate cycle 
653 |a banana (Musa acuminata L.) 
653 |a iTRAQ quantification 
653 |a ROS 
653 |a Na+ 
653 |a Capsicum annuum L. 
653 |a bZIP transcription factors 
653 |a multiple bioactive constituents 
653 |a NaCl stress 
653 |a physiological changes 
653 |a VOZ 
653 |a transcriptional regulation 
653 |a genome-wide identification 
653 |a Apocyni Veneti Folium 
653 |a impairment of photosynthesis 
653 |a salt-stress 
653 |a Oryza sativa 
653 |a reactive oxygen species 
653 |a lipid accumulation 
653 |a polyamines 
653 |a multivariate statistical analysis 
653 |a DEUs 
653 |a salinity 
653 |a TGase 
653 |a Salt stress 
653 |a Prunus domestica 
653 |a proteomics 
653 |a Arabidopsis 
653 |a RNA binding protein 
653 |a rice 
653 |a glycophytes 
653 |a SsMAX2 
653 |a drought 
653 |a genome-wide association study 
653 |a transcriptome analysis 
653 |a signal pathway 
653 |a melatonin 
653 |a MaROP5g 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1341  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/58813  |7 0  |z DOAB: description of the publication