Small Scale Deformation using Advanced Nanoindentation Techniques

Small scale mechanical deformations have gained a significant interest over the past few decades, driven by the advances in integrated circuits and microelectromechanical systems. One of the most powerful and versatile characterization methods is the nanoindentation technique. The capabilities of th...

Full description

Saved in:
Bibliographic Details
Main Author: Tsui, Ting (auth)
Other Authors: Volinsky, Alex A. (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03677naaaa2200817uu 4500
001 doab_20_500_12854_59470
005 20210212
020 |a books978-3-03897-967-8 
020 |a 9783038979661 
020 |a 9783038979678 
024 7 |a 10.3390/books978-3-03897-967-8  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Tsui, Ting  |4 auth 
700 1 |a Volinsky, Alex A.  |4 auth 
245 1 0 |a Small Scale Deformation using Advanced Nanoindentation Techniques 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (168 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Small scale mechanical deformations have gained a significant interest over the past few decades, driven by the advances in integrated circuits and microelectromechanical systems. One of the most powerful and versatile characterization methods is the nanoindentation technique. The capabilities of these depth-sensing instruments have been improved considerably. They can perform experiments in vacuum and at high temperatures, such as in-situ SEM and TEM nanoindenters. This allows researchers to visualize mechanical deformations and dislocations motion in real time. Time-dependent behavior of soft materials has also been studied in recent research works. This Special Issue on ""Small Scale Deformation using Advanced Nanoindentation Techniques""; will provide a forum for researchers from the academic and industrial communities to present advances in the field of small scale contact mechanics. Materials of interest include metals, glass, and ceramics. Manuscripts related to deformations of biomaterials and biological related specimens are also welcome. Topics of interest include, but are not limited to: 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a n/a 
653 |a nanoscale 
653 |a fracture toughness 
653 |a helium irradiation 
653 |a cement paste 
653 |a solder 
653 |a fracture 
653 |a Pop-in 
653 |a fatigue 
653 |a strain rate sensitivity 
653 |a viscoelasticity 
653 |a nuclear fusion structural materials 
653 |a biomaterials 
653 |a transmission electron microscopy 
653 |a mammalian cells 
653 |a quasicontinuum method 
653 |a brittleness and ductility 
653 |a morphology 
653 |a creep 
653 |a dimensionless analysis 
653 |a size effect 
653 |a mechanical properties 
653 |a hardness 
653 |a shear transformation zone 
653 |a TSV 
653 |a micro-cantilever beam 
653 |a multiscale 
653 |a InP(100) single crystal 
653 |a surface pit defect 
653 |a mixed-mode 
653 |a micromechanics 
653 |a soft biomaterials 
653 |a metallic glass 
653 |a atomic force microscopy (AFM) 
653 |a Bi2Se3 thin films 
653 |a constitutive model 
653 |a pop-in 
653 |a rate factor 
653 |a FIB 
653 |a nickel 
653 |a nanoindenter 
653 |a miniaturized cantilever beam 
653 |a hydrogen embrittlement 
653 |a nanoindentation 
653 |a irradiation hardening 
653 |a reduced activation ferritic martensitic (RAFM) steels 
653 |a tantalum 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1333  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/59470  |7 0  |z DOAB: description of the publication