Synthesis and Applications of Biopolymer Composites

This book, as a collection of 17 research articles, provides a selection of the most recent advances in the synthesis, characterization, and applications of environmentally friendly and biodegradable biopolymer composites and nanocomposites. Recently, the demand has been growing for a clean and poll...

Full description

Saved in:
Bibliographic Details
Main Author: Díez-Pascual, Ana (auth)
Other Authors: Cinelli, Patrizia (auth)
Format: Book Chapter
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04891naaaa2201165uu 4500
001 doab_20_500_12854_60407
005 20210212
020 |a books978-3-03921-133-3 
020 |a 9783039211333 
020 |a 9783039211326 
024 7 |a 10.3390/books978-3-03921-133-3  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Díez-Pascual, Ana  |4 auth 
700 1 |a Cinelli, Patrizia  |4 auth 
245 1 0 |a Synthesis and Applications of Biopolymer Composites 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (312 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This book, as a collection of 17 research articles, provides a selection of the most recent advances in the synthesis, characterization, and applications of environmentally friendly and biodegradable biopolymer composites and nanocomposites. Recently, the demand has been growing for a clean and pollution-free environment and an evident target regarding the minimization of fossil fuel usage. Therefore, much attention has been focused on research to replace petroleum-based commodity plastics by biodegradable materials arising from biological and renewable resources. Biopolymers-polymers produced from natural sources either chemically from a biological material or biosynthesized by living organisms-are suitable alternatives for addressing these issues due to their outstanding properties, including good barrier performance, biodegradation ability, and low weight. However, they generally possess poor mechanical properties, a short fatigue life, low chemical resistance, poor long-term durability, and limited processing capability. In order to overcome these deficiencies, biopolymers can be reinforced with fillers or nanofillers (with at least one of their dimensions in the nanometer range). Bionanocomposites are advantageous for a wide range of applications, such as in medicine, pharmaceutics, cosmetics, food packaging, agriculture, forestry, electronics, transport, construction, and many more. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a biodegradable films 
653 |a chitosan 
653 |a natural rubber 
653 |a n/a 
653 |a toughening 
653 |a elastomer 
653 |a deoxycholic acid 
653 |a cellulose fibers 
653 |a amphiphilic polymer 
653 |a cross-link density 
653 |a antioxidant activity 
653 |a nanocomposites 
653 |a silk fibroin 
653 |a impact properties 
653 |a conductivity 
653 |a antimicrobial agents 
653 |a Py-GC/MS 
653 |a Poly(propylene carbonate) 
653 |a biodisintegration 
653 |a peptide-cellulose conformation 
653 |a nanocomposite 
653 |a alginate films 
653 |a toughness 
653 |a protease sensor 
653 |a physical and mechanical properties 
653 |a biocomposites 
653 |a nanocellulose 
653 |a thermal decomposition kinetics 
653 |a potato protein 
653 |a micelles 
653 |a nanofibers 
653 |a mechanical properties 
653 |a active packaging materials 
653 |a cellulose 
653 |a structural profile 
653 |a glycol chitosan 
653 |a glass transition 
653 |a essential oils 
653 |a compatibility 
653 |a plasticized starch 
653 |a natural fibers 
653 |a biopolyester 
653 |a human neutrophil elastase 
653 |a biodegradation 
653 |a bio-composites 
653 |a fiber/matrix adhesion 
653 |a ?-tocopherol succinate 
653 |a MgO whiskers 
653 |a carbon nanotubes 
653 |a PLLA 
653 |a electrospinning 
653 |a chitin nanofibrils 
653 |a FTIR 
653 |a biopolymers composites 
653 |a DMA 
653 |a wheat gluten 
653 |a water uptake 
653 |a folic acid 
653 |a polycarbonate 
653 |a aerogel 
653 |a surfactant 
653 |a paclitaxel 
653 |a chemical pre-treatment 
653 |a biomass 
653 |a thermoplastic polyurethane 
653 |a poly(3-hydroxybutyrate-3-hydroxyvalerate) 
653 |a stress-strain 
653 |a polyfunctional monomers 
653 |a bio-based polymers 
653 |a tensile properties 
653 |a compatibilizer 
653 |a TG/FTIR 
653 |a PVA 
653 |a in vitro degradation 
653 |a poly(lactic acid) 
653 |a heat deflection temperature 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1438  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/60407  |7 0  |z DOAB: description of the publication