Remote Sensing of Volcanic Processes and Risk

Remote sensing data and methods are increasingly being implemented in assessments of volcanic processes and risk. This happens thanks to their capability to provide a spectrum of observation and measurement opportunities to accurately sense the dynamics, magnitude, frequency, and impacts of volcanic...

Full description

Saved in:
Bibliographic Details
Other Authors: Cigna, Francesca (Editor), Tapete, Deodato (Editor), Lu, Zhong (Editor), Ebmeier, Susanna K. (Editor)
Format: Book Chapter
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
GPR
EMI
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 06125naaaa2201621uu 4500
001 doab_20_500_12854_68488
005 20210501
020 |a books978-3-0365-0127-7 
020 |a 9783036501260 
020 |a 9783036501277 
024 7 |a 10.3390/books978-3-0365-0127-7  |c doi 
041 0 |a English 
042 |a dc 
072 7 |a GP  |2 bicssc 
100 1 |a Cigna, Francesca  |4 edt 
700 1 |a Tapete, Deodato  |4 edt 
700 1 |a Lu, Zhong  |4 edt 
700 1 |a Ebmeier, Susanna K.  |4 edt 
700 1 |a Cigna, Francesca  |4 oth 
700 1 |a Tapete, Deodato  |4 oth 
700 1 |a Lu, Zhong  |4 oth 
700 1 |a Ebmeier, Susanna K.  |4 oth 
245 1 0 |a Remote Sensing of Volcanic Processes and Risk 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (430 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Remote sensing data and methods are increasingly being implemented in assessments of volcanic processes and risk. This happens thanks to their capability to provide a spectrum of observation and measurement opportunities to accurately sense the dynamics, magnitude, frequency, and impacts of volcanic activity. This book includes research papers on the use of satellite, aerial, and ground-based remote sensing to detect thermal features and anomalies, investigate lava and pyroclastic flows, predict the flow path of lahars, measure gas emissions and plumes, and estimate ground deformation. The multi-disciplinary character of the approaches employed for volcano monitoring and the combination of a variety of sensor types, platforms, and methods that come out from the papers testify to the current scientific and technology trends toward multi-data and multi-sensor monitoring solutions. The added value of the papers lies in the demonstration of how remote sensing can improve our knowledge of volcanoes that pose a threat to local communities; back-analysis and critical revision of recent volcanic eruptions and unrest periods; and improvement of modeling and prediction methods. Therefore, the selected case studies also demonstrate the societal impact that this scientific discipline can potentially have on volcanic hazard and risk management. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
653 |a volcanic thermal anomalies 
653 |a change detection 
653 |a Villarrica Volcano 
653 |a small satellites 
653 |a FireBIRD 
653 |a TET-1 
653 |a gas emission monitoring 
653 |a X-band InSAR 
653 |a scanning Mini-DOAS 
653 |a Multi-GAS 
653 |a volcanic gases 
653 |a precipitable water vapor 
653 |a radar path delay 
653 |a Láscar volcano 
653 |a Mt. Etna 
653 |a multi-platform satellite observations 
653 |a RSTVOLC 
653 |a Stromboli volcano 
653 |a landslides 
653 |a effusive activity 
653 |a Ground-Based InSAR 
653 |a infrared live cam 
653 |a seismic monitoring 
653 |a PLEIADES 
653 |a Digital Elevation Models 
653 |a optical sensors 
653 |a volcano remote sensing 
653 |a volcano deformation 
653 |a SAR interferometry 
653 |a post-unrest deflation 
653 |a inversion modelling 
653 |a Santorini 
653 |a hyperspectral 
653 |a FENIX 
653 |a lava field 
653 |a SMACC 
653 |a LSMA 
653 |a volcano monitoring 
653 |a thermal imaging 
653 |a time series 
653 |a Seasonal-Trend Decomposition 
653 |a heat flux 
653 |a emissivity 
653 |a lava flow modeling 
653 |a remote sensing 
653 |a volcanic eruption interpretation 
653 |a eruption forecasting 
653 |a MSG SEVIRI 
653 |a wavelet 
653 |a thermal measurements 
653 |a lava fountain 
653 |a lava flow 
653 |a Mt.Etna 
653 |a eruptive style 
653 |a Timanfaya volcanic area 
653 |a HDR geothermal systems 
653 |a GPR 
653 |a EMI 
653 |a magnetic anomalies 
653 |a seasonality 
653 |a lahars hazard 
653 |a magma accumulation 
653 |a pyroclastic flows 
653 |a ash plumes 
653 |a volcanic cloud 
653 |a Landsat 8 
653 |a elevation model 
653 |a Volcán de Colima 
653 |a lava flow volume estimation 
653 |a SPOT 
653 |a EO-1 ALI 
653 |a MODIS data 
653 |a SENTINEL-2 images 
653 |a infrasonic activity 
653 |a open-vent activity 
653 |a fissural eruption 
653 |a long- and short-term precursors 
653 |a SO2 fluxes 
653 |a UV Camera 
653 |a Etna Volcano 
653 |a explosive basaltic volcanism 
653 |a Bezymianny 
653 |a monitoring 
653 |a lava dome 
653 |a inflation 
653 |a SAR imaging 
653 |a radar pixel offsets 
653 |a acoustic infrasound 
653 |a volcanic emissions 
653 |a ground-based remote sensing 
653 |a Sentinel missions 
653 |a Convolutional Neural Network (CNN) 
653 |a Synthetic Aperture Radar (SAR) imaging 
653 |a InSAR processing 
653 |a infrared remote sensing 
653 |a SO2 gas emission 
653 |a satellite remote sensing 
653 |a ash fall 
653 |a lava flows 
653 |a pyroclastic density currents 
653 |a mapping 
653 |a volcanic hazard 
653 |a gas emissions 
653 |a edifice growth and collapse 
653 |a volcanic unrest 
653 |a thermal anomalies 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3508  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68488  |7 0  |z DOAB: description of the publication