Design of Alloy Metals for Low-Mass Structures

Nowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic str...

Full description

Saved in:
Bibliographic Details
Other Authors: Toth, Laszlo (Editor), Denis, Sabine (Editor)
Format: Book Chapter
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
P
TEM
DRI
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 06791naaaa2201849uu 4500
001 doab_20_500_12854_68698
005 20210501
020 |a books978-3-03936-159-5 
020 |a 9783039361588 
020 |a 9783039361595 
024 7 |a 10.3390/books978-3-03936-159-5  |c doi 
041 0 |a English 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Toth, Laszlo  |4 edt 
700 1 |a Denis, Sabine  |4 edt 
700 1 |a Toth, Laszlo  |4 oth 
700 1 |a Denis, Sabine  |4 oth 
245 1 0 |a Design of Alloy Metals for Low-Mass Structures 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (460 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Nowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic structures is possible in three ways: (i) employing low density metals, (ii) developing new ones, and (iii) increasing the yield strength of existing high-density metals. The Laboratory of Excellence of the Lorraine University in France, called 'Design of Alloy Metals for Low-Mass Structures', is working to lighten metal via metallurgical means. Two leading research laboratories compose this Laboratory of Excellence within the Lorraine University: the Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), based in Metz, and the Jean Lamour Institute (IJL), located in Nancy. In this Special Issue, they report on some of their major progress in the different fields of metallurgy and mechanics of metallic materials. There are articles in the three major fields of metallurgy: physical, chemical, and mechanical metallurgy. All scales are covered, from atomistic studies to real-scale metallic structures. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a Pd-10Au alloy 
653 |a shear compression 
653 |a texture 
653 |a grain boundary sliding 
653 |a TiAl alloys 
653 |a dislocation 
653 |a twinning 
653 |a nanoindentation 
653 |a ECCI 
653 |a disconnection density 
653 |a displacement discontinuity 
653 |a crack nucleation 
653 |a crack opening displacement 
653 |a digital image correlation 
653 |a Al-Cu-Li alloys 
653 |a titanium aluminides 
653 |a grain refinement 
653 |a solidification 
653 |a inoculation 
653 |a TWIP steel 
653 |a ECAP 
653 |a deformation twinning 
653 |a VPSC 
653 |a simulation 
653 |a industrial ingot 
653 |a steel 
653 |a dendritic grain size 
653 |a titanium 
653 |a strain hardening 
653 |a anisotropy 
653 |a strain heterogeneity 
653 |a acoustic emission 
653 |a statistical analysis 
653 |a collective dislocation dynamics 
653 |a Q&amp 
653 |a P 
653 |a transition carbide 
653 |a precipitation 
653 |a HEXRD 
653 |a TEM 
653 |a grain size 
653 |a crystal plasticity 
653 |a elasto-visco-plastic self-consistent (EVPSC) scheme 
653 |a hardening 
653 |a dislocation density 
653 |a ironmaking 
653 |a direct reduction 
653 |a iron ore 
653 |a DRI 
653 |a shaft furnace 
653 |a mathematical model 
653 |a CO2 emissions 
653 |a lattice structures 
653 |a porous materials 
653 |a 3D surface maps 
653 |a finite element 
653 |a fatigue 
653 |a plasticity 
653 |a steel ladle 
653 |a non-metallic inclusions 
653 |a aggregation 
653 |a lateral extrusion ratio 
653 |a Finite Element (FE) simulation 
653 |a analytical modelling 
653 |a plastic flow machining 
653 |a back pressure 
653 |a polycrystalline β-Ti 
653 |a elastic anisotropy 
653 |a elastic/plastic incompatibilities 
653 |a elasto-viscoplastic self-consistent scheme (EVPSC) 
653 |a slip activity 
653 |a microsegregation 
653 |a gas tungsten arc welding 
653 |a directional solidification 
653 |a FM52 filler metal 
653 |a ERNiCrFe-7 
653 |a tip undercooling 
653 |a rolling 
653 |a asymmetric ratio 
653 |a thickness reduction per pass 
653 |a magnesium powders 
653 |a HPT consolidation 
653 |a microstructure 
653 |a hardness 
653 |a H-activation 
653 |a high entropy alloy 
653 |a crystallographic texture 
653 |a groove rolling 
653 |a elastic properties 
653 |a non-Schmid effects 
653 |a Taylor multiscale scheme 
653 |a localized necking 
653 |a bifurcation theory 
653 |a excess nitrogen 
653 |a clusters precipitation 
653 |a Fe-Si and Fe-Cr nitrided alloys 
653 |a APT and TEM characterization 
653 |a metal matrix composite 
653 |a in situ X-ray diffraction 
653 |a internal stresses 
653 |a phase transformation 
653 |a nickel-based single crystal superalloy 
653 |a lattice mismatch 
653 |a in situ experiments 
653 |a X-ray diffractometry 
653 |a creep 
653 |a dislocations 
653 |a diffraction 
653 |a fast Fourier transform (FFT)-based method 
653 |a discrete green operator 
653 |a voxelization artifacts 
653 |a sub-voxel method 
653 |a simulated diffraction peaks 
653 |a scattered intensity 
653 |a shape memory alloys 
653 |a architected cellular material 
653 |a numerical homogenization 
653 |a multiscale finite element method 
653 |a bainite 
653 |a martensite 
653 |a isothermal treatment 
653 |a mechanical properties 
653 |a austenite reconstruction 
653 |a variant 
653 |a magnesium 
653 |a self consistent methods 
653 |a modeling 
653 |a heterogeneous kinetics 
653 |a heat and mass transfer 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2464  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68698  |7 0  |z DOAB: description of the publication