Chapter Fast-Spectrum Fluoride Molten Salt Reactor (FFMSR) with Ultimately Reduced Radiotoxicity of Nuclear Wastes

A mixture of NaF-KF-UF4 eutectic and NaF-KF-TRUF3 eutectic containing heavy elements as much as 2.8 g/cc makes a fast-spectrum molten salt reactor based upon the U-Pu cycle available without a blanket. It does not object breeding but a stable operation without fissile makeup under practical continge...

Full description

Saved in:
Bibliographic Details
Main Author: Hirose, Yasuo (auth)
Format: Book Chapter
Published: InTechOpen 2020
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mixture of NaF-KF-UF4 eutectic and NaF-KF-TRUF3 eutectic containing heavy elements as much as 2.8 g/cc makes a fast-spectrum molten salt reactor based upon the U-Pu cycle available without a blanket. It does not object breeding but a stable operation without fissile makeup under practical contingencies. It is highly integrated with online dry chemical processes based on "selective oxide precipitation" to create a U-Pu cycle to provide as low as 0.01% leakage of TRU and nominated as the FFMSR. This certifies that the radiotoxicity of HLW for 1500 effective full power days (EFPD) operation can be equivalent to 405 tons of depleted uranium after 500 years cooling without Partition and Transmutation (P&T). A certain amount of U-TRU mixture recovered from LWR spent fuel is loaded after the initial criticality until U-Pu equilibrium but the fixed amount of 238U only thereafter. The TRU inventory in an FFMSR stays at an equilibrium perpetually. Accumulation of spent fuel of an LWR for 55 years should afford to start up the identical thermal capacity of FFMSR and to keep operation hypothetically until running out of 238U. Full deployment of the FFMSR should make the entire fuel cycle infrastructures needless except the HLW disposal site.
ISBN:intechopen.90939
Access:Open Access