Chapter Characterisation of Airborne Particulate Matter in Different European Subway Systems

Hypoxia-reoxygenation injury is a commonly used in vitro model of ischemia, which is useful to study the recovery processes following the hypoxic period. Hypoxia can be rapidly induced in vitro by replacing the culture atmosphere with hypoxic or anoxic gas mixture. Cellular injury mostly occurs as a...

Full description

Saved in:
Bibliographic Details
Main Author: Alves, Célia (auth)
Other Authors: Moreno, Teresa (auth), Martins, V. (auth), Cruz Minguillón, María (auth), Querol, Xavier (auth), Eleftheriadis Luís Mendes, Konstantinos (auth), de Miguel, Eladio (auth)
Format: Book Chapter
Published: InTechOpen 2017
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02692naaaa2200313uu 4500
001 doab_20_500_12854_70260
020 |a 65364 
024 7 |a 10.5772/65364  |c doi 
041 0 |a English 
042 |a dc 
072 7 |a MJL  |2 bicssc 
100 1 |a Alves, Célia  |4 auth 
700 1 |a Moreno, Teresa  |4 auth 
700 1 |a Martins, V.  |4 auth 
700 1 |a Cruz Minguillón, María  |4 auth 
700 1 |a Querol, Xavier  |4 auth 
700 1 |a Eleftheriadis Luís Mendes, Konstantinos  |4 auth 
700 1 |a de Miguel, Eladio  |4 auth 
245 1 0 |a Chapter Characterisation of Airborne Particulate Matter in Different European Subway Systems 
260 |b InTechOpen  |c 2017 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Hypoxia-reoxygenation injury is a commonly used in vitro model of ischemia, which is useful to study the recovery processes following the hypoxic period. Hypoxia can be rapidly induced in vitro by replacing the culture atmosphere with hypoxic or anoxic gas mixture. Cellular injury mostly occurs as a result of energetic failure in this model: the lack of oxygen blocks the mitochondrial respiration and anaerobic metabolism becomes the major source of high-energy molecules in the cells. In the absence of glucose, glycolysis and pentose phosphate pathway fail to suffice the cellular energy prerequisite and longer periods of oxygen-glucose deprivation (OGD) can completely deplete the cellular NAD+ and ATP pools. The lack of NAD+ results in severe metabolic suppression and predisposes the cells to other injury types. This includes oxidant-induced damage, since oxidative stress activates poly(ADP-ribose) polymerase (PARP) that further depletes the cellular NAD+ pool and leads to excessive cell death. The impaired mitochondrial respiration also leads to an increase in the mitochondrial membrane potential and augments the mitochondrial superoxide generation leading to oxidative stress. The above processes ultimately lead to necrotic cell death, but in certain cell types, mitochondrial damage can also trigger apoptosis. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Respiratory medicine  |2 bicssc 
653 |a hypoxia-reoxygenation injury, poly(ADP-ribose) polymerase, energetic failure, mitochondrial dysfunction, oxidative stress 
773 1 0 |0 OAPEN Library ID: ONIX_20210602_10.5772/65364_313  |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49199/1/52468.pdf  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/70260  |7 0  |z DOAB: description of the publication