Chapter Managing Heat Transfer Issues in Thermoelectric Microgenerators

This chapter deals with heat transfer challenges in the microdomain. It focuses on practical issues regarding this matter when attempting the fabrication of small footprint thermoelectric generators (μTEGs). Thermoelectric devices are designed to bridge a heat source (e.g. hot surface) and a heat si...

Full description

Saved in:
Bibliographic Details
Main Author: Marc, Salleras (auth)
Other Authors: Luis, Fonseca (auth), Inci, Donmez-Noyan (auth), Marc, Dolcet (auth), Joaquin, Santander (auth), Denise, Estrada-Wiese (auth), Jose-Manuel, Sojo (auth), Gerard, Gadea (auth), Alex, Morata (auth), Albert, Tarancon (auth)
Format: Book Chapter
Published: InTechOpen 2021
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02882naaaa2200349uu 4500
001 doab_20_500_12854_70542
020 |a intechopen.96246 
024 7 |a 10.5772/intechopen.96246  |c doi 
041 0 |a English 
042 |a dc 
072 7 |a TBC  |2 bicssc 
100 1 |a Marc, Salleras  |4 auth 
700 1 |a Luis, Fonseca  |4 auth 
700 1 |a Inci, Donmez-Noyan  |4 auth 
700 1 |a Marc, Dolcet  |4 auth 
700 1 |a Joaquin, Santander  |4 auth 
700 1 |a Denise, Estrada-Wiese  |4 auth 
700 1 |a Jose-Manuel, Sojo  |4 auth 
700 1 |a Gerard, Gadea  |4 auth 
700 1 |a Alex, Morata  |4 auth 
700 1 |a Albert, Tarancon  |4 auth 
245 1 0 |a Chapter Managing Heat Transfer Issues in Thermoelectric Microgenerators 
260 |b InTechOpen  |c 2021 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This chapter deals with heat transfer challenges in the microdomain. It focuses on practical issues regarding this matter when attempting the fabrication of small footprint thermoelectric generators (μTEGs). Thermoelectric devices are designed to bridge a heat source (e.g. hot surface) and a heat sink (e.g. ambient) assuring that a significant fraction of the available temperature difference is captured across the active thermoelectric materials. Coexistence of those contrasted temperatures in small devices is challenging. It requires careful decisions about the geometry and the intrinsic thermal properties of the materials involved. The geometrical challenges lead to micromachined architectures, which silicon technologies provide in a controlled way, but leading to fragile structures, too. In addition, extracting heat from small systems is problematic because of the high thermal resistance associated to heat exchanged by natural convection between the surrounding air and small bare surfaces. Forced convection or the application of a cold finger clearly shows the usefulness of assembling a heat exchanger in a way that is effective and compliant with the mechanical constraints of micromachined devices. Simulations and characterization of fabricated structures illustrate the effectiveness of this element integration and its impact on the trade-off between electrical and thermal behavior of the active materials in device performance. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Engineering: general  |2 bicssc 
653 |a thermoelectricity, silicon technology, micromachining, silicon nanowires, heat exchangers 
773 1 0 |0 OAPEN Library ID: ONIX_20210602_10.5772/intechopen.96246_506  |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49392/1/75809.pdf  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/70542  |7 0  |z DOAB: description of the publication