Plasma in Cancer Treatment

In the last decade, research on cold atmospheric plasma (CAP) has significantly advanced our understanding of the effect of CAP on cancer cells and their potential for cancer treatment. This effect is due to the reactive oxygen and nitrogen species (RONS) created by plasma. This has been demonstrate...

Full description

Saved in:
Bibliographic Details
Other Authors: Bogaerts, Annemie (Editor), Privat-Maldonado, Angela (Editor)
Format: Book Chapter
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
ROS
n/a
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05571naaaa2201357uu 4500
001 doab_20_500_12854_76325
005 20220111
020 |a books978-3-0365-1208-2 
020 |a 9783036512099 
020 |a 9783036512082 
024 7 |a 10.3390/books978-3-0365-1208-2  |c doi 
041 0 |a English 
042 |a dc 
072 7 |a M  |2 bicssc 
100 1 |a Bogaerts, Annemie  |4 edt 
700 1 |a Privat-Maldonado, Angela  |4 edt 
700 1 |a Bogaerts, Annemie  |4 oth 
700 1 |a Privat-Maldonado, Angela  |4 oth 
245 1 0 |a Plasma in Cancer Treatment 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (358 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In the last decade, research on cold atmospheric plasma (CAP) has significantly advanced our understanding of the effect of CAP on cancer cells and their potential for cancer treatment. This effect is due to the reactive oxygen and nitrogen species (RONS) created by plasma. This has been demonstrated for different cancer cell lines and the first clinical trials showed promising results. In addition, plasma could be combined with other treatments-such as immunotherapy-to boost its anticancer activity. The addition of new research tools to study the response of cancer cells to CAP-such as 3D in vitro, in ovo, and in vivo models and in silico approaches-as well as the use of -OMICS technologies could aid in unravelling the underlying mechanisms of CAP in cancer treatment. In order to progress towards widespread clinical application of CAP, an integrated study of the multidimensional effect of CAP in cancer treatment is essential. In this book, reviews and original research papers are published that provide new insights into the mechanisms of cold atmospheric plasma in cancer treatment, based on in vitro and in vivo experiments, clinical studies, as well as computer modeling. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
653 |a cell adhesion 
653 |a plasma medicine 
653 |a oncology 
653 |a cold atmospheric plasma 
653 |a selectivity 
653 |a plasma-treated liquid 
653 |a dielectric barrier discharge 
653 |a pancreatic cancer 
653 |a pancreatic stellate cells 
653 |a immunogenic cell death 
653 |a dendritic cells 
653 |a cell communication 
653 |a extracellular matrix (ECM) 
653 |a reactive oxygen and nitrogen species (ROS) 
653 |a tumour microenvironment (TME) 
653 |a extracellular vesicles 
653 |a communication junctions 
653 |a three-dimensional in vitro culture models 
653 |a apoptosis 
653 |a breast cancer 
653 |a genome-wide expression 
653 |a reactive oxygen species 
653 |a anticancer drugs 
653 |a screening 
653 |a tumor spheroids 
653 |a combination therapy 
653 |a kINPen 
653 |a reactive oxygen and nitrogen species 
653 |a ROS 
653 |a cancer 
653 |a non-thermal atmospheric pressure plasma (NTP) 
653 |a indirect treatment 
653 |a plasma-treated phosphate-buffered saline 
653 |a electroporation 
653 |a electric pulses 
653 |a pulsed electric field amplitude 
653 |a melanoma 
653 |a long-lived reactive species 
653 |a bone cancer 
653 |a osteosarcoma 
653 |a reactive species 
653 |a plasma-activated liquid 
653 |a Ringer's saline 
653 |a organotypic model 
653 |a nonthermal biocompatible plasma 
653 |a soft jet plasma 
653 |a human glioblastoma 
653 |a p38/MAPK pathway 
653 |a tissue penetration 
653 |a non-thermal plasma 
653 |a non-invasive plasma treatment (NIPP) 
653 |a cervical intraepithelial neoplasia (CIN) 
653 |a Raman imaging 
653 |a Raman microspectroscopy 
653 |a Plasma lipid interactions 
653 |a cold physical plasma 
653 |a radiation therapy 
653 |a radio-frequency discharge 
653 |a PARP-inhibitor 
653 |a olaparib 
653 |a DNA-damage 
653 |a gold quantum dots 
653 |a plasma 
653 |a nanomaterials 
653 |a cellular uptake 
653 |a invasiveness 
653 |a cold atmospheric pressure plasma 
653 |a plasma-activated Ringer's lactate solution 
653 |a ovarian cancer 
653 |a cytotoxicity 
653 |a plasma-activated liquids 
653 |a multicellular tumor spheroids 
653 |a long-lived reactive oxygen and nitrogen species 
653 |a high frequency electrosurgery 
653 |a plasma treatment 
653 |a cold atmospheric plasma (CAP) 
653 |a free radicals 
653 |a cancer selectivity 
653 |a cervical cancer treatment 
653 |a cervical intraepithelial neoplasia 
653 |a cholangiocarcinoma 
653 |a cold plasma 
653 |a innovative therapy 
653 |a tumor cells 
653 |a macrophages 
653 |a plasma selectivity 
653 |a plasma jet 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3745  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76325  |7 0  |z DOAB: description of the publication