Numerical and Data-Driven Modelling in Coastal, Hydrological and Hydraulic Engineering

The book presents recent studies covering the aspects of challenges in predictive modelling and applications. Advanced numerical techniques for accurate and efficient real-time prediction and optimal management in coastal and hydraulic engineering are explored. For example, adaptive unstructured mes...

Full description

Saved in:
Bibliographic Details
Other Authors: Fang, Fangxin (Editor)
Format: Book Chapter
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03363naaaa2200577uu 4500
001 doab_20_500_12854_76497
005 20220111
020 |a books978-3-0365-0957-0 
020 |a 9783036509563 
020 |a 9783036509570 
024 7 |a 10.3390/books978-3-0365-0957-0  |c doi 
041 0 |a English 
042 |a dc 
072 7 |a GP  |2 bicssc 
100 1 |a Fang, Fangxin  |4 edt 
700 1 |a Fang, Fangxin  |4 oth 
245 1 0 |a Numerical and Data-Driven Modelling in Coastal, Hydrological and Hydraulic Engineering 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (110 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The book presents recent studies covering the aspects of challenges in predictive modelling and applications. Advanced numerical techniques for accurate and efficient real-time prediction and optimal management in coastal and hydraulic engineering are explored. For example, adaptive unstructured meshes are introduced to capture the important dynamics that operate over a range of length scales. Deep learning techniques enable rapid and accurate modelling simulations and pave the way towards both real-time forecasting and overall optimisation control over time, thus improving profitability and managing risk. The use of data assimilation techniques incorporates information from experiments and observations to reduce uncertainties in predictions and improve predictive accuracy. Targeted observation approaches can be used for identifying when, where, and what types of observations would provide the greatest improvement to specific model forecasts at a future time. Such targeted observations are important as they will allow the most effective use of available monitoring resources. The combination of deep learning and data assimilation enables a rapid and accurate response in emergencies. The technologies discussed here can be also used to determine the sensitivity of outputs to various operational conditions in engineering and management, thus providing reliable information to both the public and policy-makers 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
653 |a numerical modelling 
653 |a unstructured meshes 
653 |a finite volume 
653 |a North Sea 
653 |a salinity 
653 |a deep learning 
653 |a martinez boundary salinity generator 
653 |a Sacramento-San Joaquin Delta 
653 |a residence time 
653 |a exposure time 
653 |a transport time scale 
653 |a hyper-tidal estuary 
653 |a singular value decomposition 
653 |a data assimilation 
653 |a ocean models 
653 |a observation strategies 
653 |a ocean forecasting systems 
653 |a ocean Double Gyre 
653 |a 4D-Var 
653 |a ROMS 
653 |a MEOF 
653 |a initial ensemble 
653 |a ensemble spread 
653 |a LETKF 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3943  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76497  |7 0  |z DOAB: description of the publication