Preclinical Evaluation of Lipid-Based Nanosystems

The use of lipid-based nanosystems, including lipid nanoparticles (solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)), nanoemulsions, and liposomes, among others, is widespread. Several researchers have described the advantages of different applications of these nanosystems. Fo...

Full description

Saved in:
Bibliographic Details
Other Authors: Silva, Ana Catarina (Editor), Sousa Lobo, José Manuel (Editor)
Format: Book Chapter
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
DoE
n/a
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05832naaaa2201441uu 4500
001 doab_20_500_12854_76594
005 20220111
020 |a books978-3-0365-1549-6 
020 |a 9783036515502 
020 |a 9783036515496 
024 7 |a 10.3390/books978-3-0365-1549-6  |c doi 
041 0 |a English 
042 |a dc 
072 7 |a TB  |2 bicssc 
100 1 |a Silva, Ana Catarina  |4 edt 
700 1 |a Sousa Lobo, José Manuel  |4 edt 
700 1 |a Silva, Ana Catarina  |4 oth 
700 1 |a Sousa Lobo, José Manuel  |4 oth 
245 1 0 |a Preclinical Evaluation of Lipid-Based Nanosystems 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (351 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The use of lipid-based nanosystems, including lipid nanoparticles (solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)), nanoemulsions, and liposomes, among others, is widespread. Several researchers have described the advantages of different applications of these nanosystems. For instance, they can increase the targeting and bioavailability of drugs, improving therapeutic effects. Their use in the cosmetic field is also promising, owing to their moisturizing properties and ability to protect labile cosmetic actives. Thus, it is surprising that only a few lipid-based nanosystems have reached the market. This can be explained by the strict regulatory requirements of medicines and the occurrence of unexpected in vivo failure, which highlights the need to conduct more preclinical studies.Current research is focused on testing the in vitro, ex vivo, and in vivo efficacy of lipid-based nanosystems to predict their clinical performance. However, there is a lack of method validation, which compromises the comparison between different studies.This book brings together the latest research and reviews that report on in vitro, ex vivo, and in vivo preclinical studies using lipid-based nanosystems. Readers can find up-to-date information on the most common experiments performed to predict the clinical behavior of lipid-based nanosystems. A series of 15 research articles and a review are presented, with authors from 15 different countries, which demonstrates the universality of the investigations that have been carried out in this area. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a nanostructured lipid carriers (NLC) 
653 |a formulation optimization 
653 |a rivastigmine 
653 |a quality by design (QbD) 
653 |a nasal route 
653 |a nose-to-brain 
653 |a N-alkylisatin 
653 |a liposome 
653 |a urokinase plasminogen activator 
653 |a PAI-2 
653 |a SerpinB2 
653 |a breast cancer 
653 |a liposomes 
653 |a target delivery nanosystem 
653 |a FZD10 protein 
653 |a colon cancer therapy 
653 |a supersaturation 
653 |a silica-lipid hybrid 
653 |a spray drying 
653 |a lipolysis 
653 |a lipid-based formulation 
653 |a fenofibrate 
653 |a mesoporous silica 
653 |a oral drug delivery 
653 |a hyaluronic acid 
653 |a drug release 
653 |a light activation 
653 |a stability 
653 |a mobility 
653 |a biocorona 
653 |a dissolution enhancement 
653 |a phospholipids 
653 |a solid dosage forms 
653 |a porous microparticles 
653 |a nanoemulsion(s) 
653 |a phase-behavior 
653 |a DoE 
653 |a D-optimal design 
653 |a vegetable oils 
653 |a non-ionic surfactants 
653 |a efavirenz 
653 |a flaxseed oil 
653 |a nanostructured lipid carriers 
653 |a nanocarrier 
653 |a docohexaenoic acid 
653 |a neuroprotection 
653 |a neuroinflammation 
653 |a fluconazole 
653 |a Box‒Behnken design 
653 |a nanotransfersome 
653 |a ulcer index 
653 |a zone of inhibition 
653 |a rheological behavior 
653 |a ex vivo permeation 
653 |a nanomedicine 
653 |a cancer 
653 |a doxorubicin 
653 |a melanoma 
653 |a drug delivery 
653 |a ultrasound contrast agents 
653 |a phospholipid coating 
653 |a ligand distribution 
653 |a cholesterol 
653 |a acoustic response 
653 |a microbubble 
653 |a lipid phase 
653 |a dialysis 
653 |a ammonia 
653 |a intoxication 
653 |a cyanocobalamin 
653 |a vitamin B12 
653 |a atopic dermatitis 
653 |a psoriasis 
653 |a transferosomes 
653 |a lipid vesicles 
653 |a skin topical delivery 
653 |a oligonucleotide 
653 |a self-emulsifying drug delivery systems 
653 |a hydrophobic ion pairing 
653 |a intestinal permeation enhancers 
653 |a Caco-2 monolayer 
653 |a clarithromycin 
653 |a solid lipid nanoparticles 
653 |a optimization 
653 |a permeation 
653 |a pharmacokinetics 
653 |a follicular targeting 
653 |a dexamethasone 
653 |a alopecia areata 
653 |a lipomers 
653 |a lipid polymer hybrid nanocapsules 
653 |a biodistribution 
653 |a skin 
653 |a ethyl cellulose 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4039  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76594  |7 0  |z DOAB: description of the publication