Wind Power Integration into Power Systems: Stability and Control Aspects

Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to clean and low-carbon renewable energy sources. Complex stability issues,...

Full description

Saved in:
Bibliographic Details
Other Authors: Meegahapola, Lasantha (Editor), Bu, Siqi (Editor)
Format: Book Chapter
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
ES
n/a
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05276naaaa2201129uu 4500
001 doab_20_500_12854_76662
005 20220111
020 |a books978-3-0365-1609-7 
020 |a 9783036516103 
020 |a 9783036516097 
024 7 |a 10.3390/books978-3-0365-1609-7  |c doi 
041 0 |a English 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a KNB  |2 bicssc 
100 1 |a Meegahapola, Lasantha  |4 edt 
700 1 |a Bu, Siqi  |4 edt 
700 1 |a Meegahapola, Lasantha  |4 oth 
700 1 |a Bu, Siqi  |4 oth 
245 1 0 |a Wind Power Integration into Power Systems: Stability and Control Aspects 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (264 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to clean and low-carbon renewable energy sources. Complex stability issues, such as frequency, voltage, and oscillatory instability, are frequently reported in the power grids of many countries and regions (e.g., Germany, Denmark, Ireland, and South Australia) due to the substantially increased wind power generation. Control techniques, such as virtual/emulated inertia and damping controls, could be developed to address these stability issues, and additional devices, such as energy storage systems, can also be deployed to mitigate the adverse impact of high wind power generation on various system stability problems. Moreover, other wind power integration aspects, such as capacity planning and the short- and long-term forecasting of wind power generation, also require careful attention to ensure grid security and reliability. This book includes fourteen novel research articles published in this Energies Special Issue on Wind Power Integration into Power Systems: Stability and Control Aspects, with topics ranging from stability and control to system capacity planning and forecasting. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a Energy industries & utilities  |2 bicssc 
653 |a DFIG 
653 |a ES 
653 |a virtual inertia control 
653 |a capacity allocation 
653 |a fuzzy logic controller 
653 |a wind power generation 
653 |a multi-model predictive control 
653 |a fuzzy clustering 
653 |a virtual synchronous generator 
653 |a doubly fed induction generator 
653 |a sub-synchronous resonance 
653 |a impedance modeling 
653 |a renewable energy sources (RESs) 
653 |a regional RoCoF 
653 |a model-based operational planning 
653 |a linear sensitivity-based method (LSM) 
653 |a cumulant-based method (CBM) 
653 |a collaborative capacity planning 
653 |a distributed wind power (DWP) 
653 |a energy storage system (ESS) 
653 |a optimization 
653 |a variable-structure copula 
653 |a Reynolds-averaged Navier-Stokes method 
653 |a wind turbine wake model 
653 |a 3D aerodynamic model 
653 |a turbulence model 
653 |a correction modules 
653 |a hybrid prediction model 
653 |a wavelet decomposition 
653 |a long short-term memory 
653 |a scenario analysis 
653 |a weak grids 
653 |a full-converter wind 
653 |a active power output 
653 |a control parameters 
653 |a subsynchronous oscillation 
653 |a eigenvalue analysis 
653 |a doubly fed induction generator (DFIG) 
653 |a wind generation 
653 |a frequency control 
653 |a artificial neural network (ANN) 
653 |a error following forget gate-based long short-term memory 
653 |a ultra-short-term prediction 
653 |a wind power 
653 |a load frequency control (LFC) 
653 |a wind farm 
653 |a particle swarm optimization 
653 |a kinetic energy 
653 |a inertial response 
653 |a low inertia 
653 |a the center of inertia 
653 |a frequency response metrics 
653 |a wind integration 
653 |a PSS/E 
653 |a FORTRAN 
653 |a electromechanical dynamics 
653 |a FCWG dynamics 
653 |a strong interaction 
653 |a electromechanical loop correlation ratio (ELCR) 
653 |a FCWG dynamic correlation ratio (FDCR) 
653 |a quasi- electromechanical loop correlation ratio (QELCR) 
653 |a permanent magnet synchronous generator (PMSG) 
653 |a supercapacitor energy storage (SCES) 
653 |a rotor overspeed control 
653 |a low voltage ride through (LVRT) 
653 |a capacity configuration of SCES 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4109  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76662  |7 0  |z DOAB: description of the publication