Recovery and Recycling of Valuable Metals

Metals have always played a significant role in human life, and the current global growth and prosperity are directly dependent on these materials. With the rapidly growing global demand for metals, their extraction from natural minerals (as their primary sources) has been enhanced, causing a signif...

Full description

Saved in:
Bibliographic Details
Other Authors: Azizi, Dariush (Editor)
Format: Book Chapter
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05717naaaa2201309uu 4500
001 doab_20_500_12854_78811
005 20220224
020 |a books978-3-0365-3035-2 
020 |a 9783036530352 
020 |a 9783036530345 
024 7 |a 10.3390/books978-3-0365-3035-2  |c doi 
041 0 |a English 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Azizi, Dariush  |4 edt 
700 1 |a Azizi, Dariush  |4 oth 
245 1 0 |a Recovery and Recycling of Valuable Metals 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (258 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Metals have always played a significant role in human life, and the current global growth and prosperity are directly dependent on these materials. With the rapidly growing global demand for metals, their extraction from natural minerals (as their primary sources) has been enhanced, causing a significant reduction in the grade and quality of the ores in ore deposits and leading to the production of huge amounts of waste, which requires management. In light of this, new proposals to develop more advanced metal recovery technologies from minerals are needed. Additionally, the huge quantity of waste generated through all steps of metal production is known to be a source of environmental pollution, while its valorization can create value via recycling metals or even though use in the production of other valuable materials. Such waste valorization is also in line with the United Nations' Sustainable Development Goals (SDGs), as well as the implementation of the Paris Agreement. In this regard, the recycling of end-user products in order to reproduce valuable metals can also create significant value and reduce mining activities, and thus, their harmful consequences worldwide. Therefore, research and development in the state-of-the-art technologies for the recovery and recycling of metals are absolutely necessary. The aim of this Special Issue was to collect a range of articles on different aspects of valuable metal recovery and recycling from primary and secondary sources, as well as to decipher all new methods, processes, and knowledge in valuable metal production. We hope that this open access Special Issue will provide a great opportunity to demonstrate the work of researchers working in this area all around the world and help to provide new ideas for researchers who are working in the areas of hydrometallurgy, mineral processing, and waste recycling and valorization. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a solvent extraction 
653 |a t-BAMBP 
653 |a rubidium 
653 |a cesium 
653 |a brine 
653 |a chemical precipitation 
653 |a recovery 
653 |a reduced ilmenite 
653 |a synthetic rutile 
653 |a aeration leaching 
653 |a Becher process 
653 |a spent alkaline battery 
653 |a recycling 
653 |a leaching 
653 |a electrowinning 
653 |a hydrometallurgy 
653 |a techno-economic evaluation 
653 |a metal recovery 
653 |a rhenium 
653 |a molybdenum 
653 |a separation 
653 |a rare earth elements 
653 |a thorium 
653 |a uranium 
653 |a separation methods 
653 |a precipitation 
653 |a membrane 
653 |a pavement 
653 |a bituminous mixtures 
653 |a electric arc furnace slag 
653 |a ladle furnace slag 
653 |a cellulose fibers 
653 |a stone mastic asphalt 
653 |a sustainability 
653 |a steel 
653 |a circular economy 
653 |a zinc residue 
653 |a cobalt hydroxide 
653 |a cementation 
653 |a oxidative precipitation 
653 |a cobalt (Co) 
653 |a nickel (Ni) 
653 |a aluminum (Al) 
653 |a titanium dioxide (TiO2) 
653 |a silicon dioxide (SiO2) 
653 |a sulfide 
653 |a carbon material 
653 |a copper 
653 |a zinc 
653 |a copper processing 
653 |a copper leaching 
653 |a copper bearing dusts 
653 |a cyanex 272 
653 |a ionquest 801 
653 |a cobalt 
653 |a nickel 
653 |a vanadium extraction process 
653 |a vanadium yield 
653 |a minimum carbon loss 
653 |a temperature strategy 
653 |a steelmaking slag 
653 |a phosphorus 
653 |a 2CaO∙SiO2-3CaO∙P2O5 
653 |a NdFeB magnets 
653 |a critical metals 
653 |a rare earth elements (REEs) 
653 |a focus infrared digestion 
653 |a ICP-OES 
653 |a electronic waste 
653 |a CaO-SiO2-FeO-Al2O3-MgO slag system 
653 |a viscosity 
653 |a slag structure 
653 |a silicate structure 
653 |a aluminate structure 
653 |a FeO recovery 
653 |a weathered crust elution-deposited rare earth ore 
653 |a rare earth recovery 
653 |a ion-exchange leaching 
653 |a chelation 
653 |a chelating agents 
653 |a polydentate ligands 
653 |a pyrometallurgy 
653 |a dysprosium 
653 |a liquid metal extraction 
653 |a phase transformation 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4906  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/78811  |7 0  |z DOAB: description of the publication