Preliminary Study of a New Topology Permanent Magnet Flux Switching Motor for Electric Buses

Electric buses (EBs) as public transit that have been introduced in modern countries recently are an alternative effort to reduce climate change and environmental impacts of fossil fuels. One example of the successfully developed motor for EBs is interior permanent magnet synchronous motor (IPMSM) w...

Full description

Saved in:
Bibliographic Details
Main Authors: Omar, M. F. (Author), Sulaiman, E. (Author), Ahmad, M. Z. (Author), Rani, J. A. (Author), CV, Aravind (Author)
Format: EJournal Article
Published: Institute of Advanced Engineering and Science, 2018-05-01.
Subjects:
Online Access:Get fulltext
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02844 am a22003373u 4500
001 ijeecs11833_8371
042 |a dc 
100 1 0 |a Omar, M. F.  |e author 
100 1 0 |e contributor 
700 1 0 |a Sulaiman, E.  |e author 
700 1 0 |a Ahmad, M. Z.  |e author 
700 1 0 |a Rani, J. A.  |e author 
700 1 0 |a CV, Aravind  |e author 
245 0 0 |a Preliminary Study of a New Topology Permanent Magnet Flux Switching Motor for Electric Buses 
260 |b Institute of Advanced Engineering and Science,   |c 2018-05-01. 
500 |a https://ijeecs.iaescore.com/index.php/IJEECS/article/view/11833 
520 |a Electric buses (EBs) as public transit that have been introduced in modern countries recently are an alternative effort to reduce climate change and environmental impacts of fossil fuels. One example of the successfully developed motor for EBs is interior permanent magnet synchronous motor (IPMSM) with merits of heat dissipating, high torque per frame size and reliability influence by absence of brushes. However, the three-phase armature windings are wounded in the form of distributed windings, results in much copper loss, high coil end length and reduced the efficiency. The embedded rectangular magnets inside the rotor make rotor less robust, increased rotor weight and reduced the torque and power density. The present IPMSM has a complex structure which is relatively difficult to manufacture and tough in optimization process. The 7.0 kg volume of PM used in IPMSM is very high, which increases the cost of the machine. Therefore, a new topology of permanent magnet flux switching motor using wedge-shaped PM and single stator structure with the advantages of simple stator design, robust rotor structure, high of torque and power, and high efficiency is proposed. The design, flux linkage, back-emf, cogging torque, average torque, speed, and power of this new topology are investigated by JMAG-Designer version 14.1 via a 2D-FEA. The initial design of proposed motor produces torque and power of 905.9 Nm and 57.75 kW, respectively. 
540 |a Copyright (c) 2018 Institute of Advanced Engineering and Science 
540 |a http://creativecommons.org/licenses/by-nc/4.0 
546 |a eng 
690
690 |a Permanent magnet; Flux Switching Motor; Three phase; Salient rotor; Non-overlapped windings; Electric buses 
655 7 |a info:eu-repo/semantics/article  |2 local 
655 7 |a info:eu-repo/semantics/publishedVersion  |2 local 
655 7 |2 local 
786 0 |n Indonesian Journal of Electrical Engineering and Computer Science; Vol 10, No 2: May 2018; 446-455 
786 0 |n 2502-4760 
786 0 |n 2502-4752 
786 0 |n 10.11591/ijeecs.v10.i2 
787 0 |n https://ijeecs.iaescore.com/index.php/IJEECS/article/view/11833/8371 
856 4 1 |u https://ijeecs.iaescore.com/index.php/IJEECS/article/view/11833/8371  |z Get fulltext