Power Cable with Two Joints Experimental Analysis for Defect Assessments

Time domain reflectometry (TDR) is an easy technique that provides quick response which is ideal for power utility companies to conduct cable diagnostics on-site. Electricity disruption due to power cable failure is a major challenge for power utility companies due to the long length of cable instal...

Full description

Saved in:
Bibliographic Details
Main Authors: Kuan, Tze Mei (Author), Ariffin, Azrul Mohd (Author)
Format: EJournal Article
Published: Institute of Advanced Engineering and Science, 2018-10-01.
Subjects:
Online Access:Get fulltext
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02747 am a22003013u 4500
001 ijeecs14475_9351
042 |a dc 
100 1 0 |a Kuan, Tze Mei  |e author 
100 1 0 |e contributor 
700 1 0 |a Ariffin, Azrul Mohd.  |e author 
245 0 0 |a Power Cable with Two Joints Experimental Analysis for Defect Assessments 
260 |b Institute of Advanced Engineering and Science,   |c 2018-10-01. 
500 |a https://ijeecs.iaescore.com/index.php/IJEECS/article/view/14475 
520 |a Time domain reflectometry (TDR) is an easy technique that provides quick response which is ideal for power utility companies to conduct cable diagnostics on-site. Electricity disruption due to power cable failure is a major challenge for power utility companies due to the long length of cable installed with joints. The long time taken to diagnose the defect along the cable before electricity can be restored has not only jeopardized the reputation of power utility companies but also brings losses to the economy. Hence, this study conducts experimental analysis on cable with two joints with the application of TDR technique to reduce the electricity disruption time. This research is divided into two stages where stage 1 conducts experiments on cable with one degraded section while stage 2 looks into cable with two degraded sections. The TDR reflection characteristics are studied from stage 1 experiments and applied to stage 2 experiments to verify the consistency of the TDR reflection characteristics. The cable conditions of stage 2 experiments are predicted using the reflection characteristics from stage 1 observations and are then validated by comparing these predictions with the actual cable configuration. Results obtained from these experiments have proven that the TDR reflection characteristics are consistent and accurate which can be used to sectionalize the degraded cable section. Detail findings of all experiments conducted with the TDR application are discussed in part three of this paper. 
540 |a Copyright (c) 2018 Institute of Advanced Engineering and Science 
540 |a http://creativecommons.org/licenses/by-nc/4.0 
546 |a eng 
690
690 |a Cables, defects, joints, time domain reflectometry 
655 7 |a info:eu-repo/semantics/article  |2 local 
655 7 |a info:eu-repo/semantics/publishedVersion  |2 local 
655 7 |2 local 
786 0 |n Indonesian Journal of Electrical Engineering and Computer Science; Vol 12, No 1: October 2018; 399-405 
786 0 |n 2502-4760 
786 0 |n 2502-4752 
786 0 |n 10.11591/ijeecs.v12.i1 
787 0 |n https://ijeecs.iaescore.com/index.php/IJEECS/article/view/14475/9351 
856 4 1 |u https://ijeecs.iaescore.com/index.php/IJEECS/article/view/14475/9351  |z Get fulltext