Integration of synthetic minority oversampling technique for imbalanced class

In the data mining, a class imbalance is a problematic issue to look for the solutions. It probably because machine learning is constructed by using algorithms with assuming the number of instances in each balanced class, so when using a class imbalance, it is possible that the prediction results ar...

Full description

Saved in:
Bibliographic Details
Main Authors: Santoso, Noviyanti (Author), Wibowo, Wahyu (Author), Hikmawati, Hilda (Author)
Format: EJournal Article
Published: Institute of Advanced Engineering and Science, 2019-01-01.
Subjects:
Online Access:Get fulltext
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the data mining, a class imbalance is a problematic issue to look for the solutions. It probably because machine learning is constructed by using algorithms with assuming the number of instances in each balanced class, so when using a class imbalance, it is possible that the prediction results are not appropriate. They are solutions offered to solve class imbalance issues, including oversampling, undersampling, and synthetic minority oversampling technique (SMOTE). Both oversampling and undersampling have its disadvantages, so SMOTE is an alternative to overcome it. By integrating SMOTE in the data mining classification method such as Naive Bayes, Support Vector Machine (SVM), and Random Forest (RF) is expected to improve the performance of accuracy. In this research, it was found that the data of SMOTE gave better accuracy than the original data. In addition to the three classification methods used, RF gives the highest average AUC, F-measure, and G-means score.
Item Description:https://ijeecs.iaescore.com/index.php/IJEECS/article/view/14796