Load power and energy management system using proteus visual design software

At present, there is a serious energy crisis around the globe which impacts greatly on the power grid. A smart and user friendly energy management system can control the energy consumption. In this paper, load power and energy management system is developed and simulated using Proteus Visual Design...

Full description

Saved in:
Bibliographic Details
Main Authors: Venugopal, Chitra (Author), Govender, Thershen (Author)
Format: EJournal Article
Published: Institute of Advanced Engineering and Science, 2020-11-01.
Subjects:
Online Access:Get fulltext
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03163 am a22003013u 4500
001 ijeecs21792_14319
042 |a dc 
100 1 0 |a Venugopal, Chitra  |e author 
100 1 0 |e contributor 
700 1 0 |a Govender, Thershen  |e author 
245 0 0 |a Load power and energy management system using proteus visual design software 
260 |b Institute of Advanced Engineering and Science,   |c 2020-11-01. 
500 |a https://ijeecs.iaescore.com/index.php/IJEECS/article/view/21792 
520 |a At present, there is a serious energy crisis around the globe which impacts greatly on the power grid. A smart and user friendly energy management system can control the energy consumption. In this paper, load power and energy management system is developed and simulated using Proteus Visual Design software.  The load analysis and measurement techniques are developed for single phase and three phase loads and implemented using Arduino Mega 2560 board.  User friendly controls are developed using the visual design feature of the software to control the energy consumption. The load power management system is simulated by measuring the power consumed by various residential loads such as lights, fans, air-conditioners, heaters. The industrial loads are simulated by squirrel cage induction motor. The load analysis summary is displayed on the Arduino 2.8 inch TFT display shield in a table format. The simulaion model is created for future hardware implementation and is tested under various practical input conditions. The Proteus Visual Design software is chosen in this resesarch due to its advantages such as professional PCB layout package, availability of nearly 800 microcontrollers in the library package etc.The developed model successfully measured the energy consumption of several loads and assist the user in controlling the energy usage through automation control techniques. The accuracy of the results shows that the technique and the model developed in this research can be used by engineers, students and hobbyists who are working with energy monitoring systems and smart home applications directly. This is an ongoing project where in the next stage, the hardware design of the simulation model will be implemented and tested in real time application. 
540 |a Copyright (c) 2020 Institute of Advanced Engineering and Science 
540 |a http://creativecommons.org/licenses/by-nc/4.0 
546 |a eng 
690 |a Power and Control, Microcontrollers, Energy management 
690 |a Proteus Visula Designer suite; Arduino mega; Load analysis; Power management; Automation; Energy monitoring; Single phase; Three phase load 
655 7 |a info:eu-repo/semantics/article  |2 local 
655 7 |a info:eu-repo/semantics/publishedVersion  |2 local 
655 7 |2 local 
786 0 |n Indonesian Journal of Electrical Engineering and Computer Science; Vol 20, No 2: November 2020; 1044-1052 
786 0 |n 2502-4760 
786 0 |n 2502-4752 
786 0 |n 10.11591/ijeecs.v20.i2 
787 0 |n https://ijeecs.iaescore.com/index.php/IJEECS/article/view/21792/14319 
856 4 1 |u https://ijeecs.iaescore.com/index.php/IJEECS/article/view/21792/14319  |z Get fulltext