A New Approach of the Online Tuning Gain Scheduling Nonlinear PID Controller Using Neural Network

This chapter presents the design, development and implementation of a novel proposed online-tuning Gain Scheduling Dynamic Neural PID (DNN-PID) Controller using neural network suitable for real-time manipulator control applications. The unique feature of the novel DNN-PID controller is that it has h...

Full description

Saved in:
Bibliographic Details
Main Authors: Ho Pham Huy Anh (Author), Nguyen Thanh Nam (Author)
Format: Ebooks
Published: IntechOpen, 2011-04-19.
Subjects:
Online Access:Get Online
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02295 am a22002053u 4500
001 intechopen_books_125
042 |a dc 
100 1 0 |a Ho Pham Huy Anh  |e author 
700 1 0 |a Nguyen Thanh Nam  |e author 
245 0 0 |a A New Approach of the Online Tuning Gain Scheduling Nonlinear PID Controller Using Neural Network 
260 |b IntechOpen,   |c 2011-04-19. 
500 |a https://mts.intechopen.com/articles/show/title/a-new-approach-of-the-online-tuning-gain-scheduling-nonlinear-pid-controller-using-neural-network 
520 |a This chapter presents the design, development and implementation of a novel proposed online-tuning Gain Scheduling Dynamic Neural PID (DNN-PID) Controller using neural network suitable for real-time manipulator control applications. The unique feature of the novel DNN-PID controller is that it has highly simple and dynamic self-organizing structure, fast online-tuning speed, good generalization and flexibility in online-updating. The proposed adaptive algorithm focuses on fast and efficiently optimizing Gain Scheduling and PID weighting parameters of Neural MLPNN model used in DNN-PID controller. This approach is employed to implement the DNN-PID controller with a view of controlling the joint angle position of the highly nonlinear pneumatic artificial muscle (PAM) manipulator in real-time through Real-Time Windows Target run in MATLAB SIMULINK® environment. The performance of this novel proposed controller was found to be outperforming in comparison with conventional PID controller. These results can be applied to control other highly nonlinear SISO and MIMO systems. Keywords: highly nonlinear PAM manipulator, proposed online tuning Gain Scheduling Dynamic Nonlinear PID controller (DNN-PID), real-time joint angle position control, fast online tuning back propagation (BP) algorithm, pneumatic artificial muscle (PAM) actuator. 
540 |a https://creativecommons.org/licenses/by-nc-sa/3.0/ 
546 |a en 
690 |a PID Control, Implementation and Tuning 
655 7 |a Chapter, Part Of Book  |2 local 
786 0 |n https://www.intechopen.com/books/125 
787 0 |n ISBN:978-953-307-166-4 
856 \ \ |u https://mts.intechopen.com/articles/show/title/a-new-approach-of-the-online-tuning-gain-scheduling-nonlinear-pid-controller-using-neural-network  |z Get Online