Atmospheric Radiative Transfer Parameterizations

Various radiative transfer (RT) schemes are presented in the chapter including four-stream discrete ordinates adding method (4DDA), four-stream harmonic expansion approximation (4SDA) for the solar spectra and absorption approximation (AA), variational iteration method (VIM) for the infrared spectra...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Feng (Author), Shi, Yi-Ning (Author), Wu, Kun (Author), Li, Jiangnan (Author), Li, Wenwen (Author)
Format: Ebooks
Published: IntechOpen, 2019-04-23.
Subjects:
Online Access:Get Online
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Various radiative transfer (RT) schemes are presented in the chapter including four-stream discrete ordinates adding method (4DDA), four-stream harmonic expansion approximation (4SDA) for the solar spectra and absorption approximation (AA), variational iteration method (VIM) for the infrared spectra. 4DDA uses Gaussian quadrature method to deal with the integration in the RT equation. 4SDA considers four-order spherical harmonic expansion in radiative intensity. VIM allows the zeroth-order solution to be identified as AA, and the scattering effect is included in the first-order iteration. By applying 4DDA/4SDA to a realistic atmospheric profile with gaseous transmission considered, it is found that the accuracy of 4DDA/4SDA is superior to two stream spherical harmonic (Eddington approximation) adding method (2SDA) and two-stream discrete ordinates adding method (2DDA), especially for the cloudy conditions. It is shown that the relative errors of 4DDA/4SDA are generally less than 1% in heating rate, while the relative errors of both 2SDA and 2DDA are over 6%. By applying VIM to a full radiation algorithm a gaseous gaseous transmission, it is found that VIM is generally more accurate than the discrete ordinates method (DOM). Computationally, VIM is slightly faster than DOM in the two-stream case but more than twice as fast in the four-stream case. In view of its high overall accuracy and computational efficiency, 4DDA, 4SDA, as well as VIM are well suited in solving radiative transfer in climate models.
Item Description:https://mts.intechopen.com/articles/show/title/atmospheric-radiative-transfer-parameterizations