Tailoring NK Cell Receptor-Ligand Interactions: An Art in Evolution

Recognition and killing of aberrant, infected or tumor targets by Natural Killer (NK) cells is mediated by positive signals transduced by activating receptors upon engagement of ligands on target surface. These stimulatory pathways are counterbalanced by inhibitory receptors that raise NK cell activ...

Full description

Saved in:
Bibliographic Details
Main Author: Gianfranco Pittari (auth)
Other Authors: Antoine Toubert (auth), Ulrike Koehl (auth)
Format: Book Chapter
Published: Frontiers Media SA 2018
Subjects:
Online Access:Get Fullteks
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04848naaaa2200361uu 4500
001 doab_20_500_12854_60471
005 20210212
020 |a 978-2-88945-464-8 
020 |a 9782889454648 
024 7 |a 10.3389/978-2-88945-464-8  |c doi 
041 0 |a English 
042 |a dc 
100 1 |a Gianfranco Pittari  |4 auth 
700 1 |a Antoine Toubert  |4 auth 
700 1 |a Ulrike Koehl  |4 auth 
245 1 0 |a Tailoring NK Cell Receptor-Ligand Interactions: An Art in Evolution 
260 |b Frontiers Media SA  |c 2018 
300 |a 1 electronic resource (407 p.) 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Recognition and killing of aberrant, infected or tumor targets by Natural Killer (NK) cells is mediated by positive signals transduced by activating receptors upon engagement of ligands on target surface. These stimulatory pathways are counterbalanced by inhibitory receptors that raise NK cell activation threshold through negative antagonist signals. While regulatory effects are necessary for physiologic control of autoimmune aggression, they may restrain the ability of NK cells to activate against disease. Overcoming this barrier to immune surveillance, multiple approaches to enhance NK-mediated responses are being investigated since two decades. Propelled by considerable advances in the understanding of NK cell biology, these studies are critical for effective translation of NK-based immunotherapy principles into the clinic. In humans, dominant inhibitory signals are transduced by Killer Immunoglobulin Like Receptors (KIR) recognizing cognate HLA class I on target cells. Conversely, KIR recognition of "missing self-HLA" - due to HLA loss or HLA/ KIR mismatch - triggers NK-mediated tumor rejection. Initially observed in murine transplant models, these antitumor effects were later found to have important implications for the clinical outcome of haplotype-mismatched stemcell transplantation. Here, donor NK subsets protect against acute myeloid leukemia (AML) relapse through missing self recognition of donor HLA-C allele groups (C1 or C2) and/or Bw4 epitope. These studies were subsequently extended by trials investigating the antileukemia effects of adoptively transferred haplotype-mismatched NK cells in non-transplant settings. Other mechanisms have been found to induce clinically relevant NK cell alloreactivity in transplantation, e.g., post-reconstitution functional reversal of anergic NK cells. More recently, activating KIR came into the spotlight for their potential ability to directly activate donor NK cells through in vivo recognition of HLA or other ligands. Novel therapeutic monoclonal antibodies (mAb) may optimize NK-mediated effects. Examples include obinutuzumab (GA101), a glyco-engineered anti-CD20 mAb with increased affinity for the FcγRIIIA receptor, enhancing antibody-dependent cellular cytotoxicity; lirilumab (IPH2102), a first-in-class NK-specific checkpoint inhibitor, blocking the interaction between the major KIR and cognate HLA-C antigens; and elotuzumab (HuLuc63), a humanized monoclonal antibody specific for SLAMF7, whose anti-myeloma therapeutic effects are partly due to direct activation of SLAMF7-expressing NK cells. In addition to conventional antibodies, NK cell-targeted bispecific (BiKEs) and trispecific (TriKEs) killer engagers have also been developed. These proteins elicit potent effector functions by binding target ligands (e.g., CD19, CD22, CD30, CD133, HLA class II, EGFR) on one arm and NK receptors on the other. An additional innovative approach to direct NK cell activity is genetic reprogramming with chimeric antigen receptors (CAR). To date, primary NK cells and the NK92 cell line have been engineered with CAR specific for antigens expressed on multiple tumors. Encouraging preclinical results warrant further development of this approach. This Research Topic welcomes contributions addressing mechanisms of NK-mediated activation in response to disease as well as past and contemporary strategies to enhance NK mediated reactivity through control of the interactions between NK receptors and their ligands. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
653 |a Natural Killer cells 
653 |a Checkpoint inhibitors 
653 |a Immune Evasion 
653 |a Immunotherapy 
653 |a Transplantation 
653 |a chimeric antigen receptors 
653 |a Nk receptors 
653 |a bispecific antibodies 
653 |a Cancer 
856 4 0 |a www.oapen.org  |u https://www.frontiersin.org/research-topics/4765/tailoring-nk-cell-receptor-ligand-interactions-an-art-in-evolution  |7 0  |z Get Fullteks 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/60471  |7 0  |z DOAB: description of the publication